We have reexamined the origin of the apparent differentiation between nitrogen-bearing molecules and complex oxygen-bearing molecules that is observed in hot molecular cores associated with massive protostars. Observations show that methanol is an ubiquitous and abundant component of protostellar ices. Recent observations suggest that ammonia may constitute an appreciable fraction of the ices toward some sources. In contrast to previous theories that suggested that N/O differentiation was caused by an anticorrelation between methanol and ammonia in the precursor grain mantles, we show that the presence of ammonia in mantles and the core temperature are key quantities in determining N/O differentiation. Calculations are presented which show that when large amounts of ammonia are evaporated alkyl cation transfer reactions are suppressed and the abundances of complex O-bearing organic molecules greatly reduced. Cooler cores (100 K) eventually evolve to an oxygen-rich chemical state similar to that attained when no ammonia was injected, but on a timescale that is an order of magnitude longer (~10(5) yr). Hotter cores (300 K) never evolve an O-rich chemistry unless ammonia is almost absent from the mantles. In this latter case, a complex O-rich chemistry develops on a timescale of ~10(4) yr, as in previous models, but disappears in about 2 x 10(5) yr, after which time the core is rich in NH3, HCN, and other N-bearing molecules. There are thus two ways in which N-rich cores can occur. We briefly discuss the implications for the determination of hot-core ages and for explaining N/O differentiation in several well-studied sources.
We describe a mechanism for enhanced nitrogen isotope fractionation in dense molecular gas where most of the molecules containing carbon and oxygen have condensed on grains but where N 2 remains in the gas. The lack of hydroxl molecules prevents the recycling of N atoms into N 2 , and the nitrogen eventually becomes atomic. Ammonia is formed efficiently under these conditions and rapidly accretes as ice. We find that a significant fraction of the total nitrogen is ultimately present as solid NH 3 . This interstellar ammonia is enhanced in 15 N with 15 NH 3 / 14 NH 3 almost 80% higher than the cosmic 15 N/ 14 N ratio. It is possible that a large part of the nitrogen available to the early solar system was highly fractionated ammonia ice and hence that the 15 N enhancements of primitive solar system material and the depletion of in comets are concomitant. Other implications of this N 2 theory for observations of dense molecular material and the nitrogen inventory available to the protosolar nebula are briefly discussed.
On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass to gas mass in the ejecta was much larger than before impact; (iii) the new activity did not last more than a few days, and by 9 July the comet's behavior was indistinguishable from its pre-impact behavior; and (iv) there were interesting transient phenomena that may be correlated with cratering physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.