The H I Parkes All-Sky Survey (HIPASS) catalogue forms the largest uniform catalogue of H I sources compiled to date, with 4315 sources identified purely by their H I content. The catalogue data comprise the southern region δ < + 2 • of HIPASS, the first blind H I survey to cover the entire southern sky. The rms noise for this survey is 13 mJy beam −1 and the velocity range is −1280 to 12 700 km s −1 . Data search, verification and parametrization methods are discussed along with a description of measured quantities. Full catalogue data are made available to the astronomical community including positions, velocities, velocity widths, integrated fluxes and peak flux densities. Also available are on-sky moment maps, position-velocity moment maps and spectra of catalogue sources. A number of local large-scale features are observed in the space distribution of sources, including the super-Galactic plane and the Local Void. Notably, large-scale structure is seen at low Galactic latitudes, a region normally obscured at optical wavelengths.
We use Hubble Space Telescope (HST) NICMOS continuum and Paα observations to study the near-infrared and star-formation properties of a representative sample of 30 local (d ∼ 35 − 75 Mpc) luminous infrared galaxies (LIRGs, infrared [8 − 1000 µm] luminosities of log L IR = 11 − 11.9 [L ⊙ ]). The data provide spatial resolutions of 25 − 50 pc and cover the central ∼ 3.3 − 7.1 kpc regions of these galaxies. About half of the LIRGs show compact (∼ 1 − 2 kpc) Paα emission with a high surface brightness in the form of nuclear emission, rings, and mini-spirals. The rest of the sample show Paα emission along the disk and the spiral arms extending over scales of 3 − 7 kpc and larger. About half of the sample contains HII regions with Hα luminosities significantly higher than those observed in normal galaxies. There is a linear empirical relationship between the mid-IR 24 µm and hydrogen recombination (extinction-corrected Paα) luminosity for these LIRGs, and the HII regions in the central part of M51. This relation holds over more than four decades in luminosity suggesting that the mid-IR emission is a good tracer of the star formation rate (SFR). Analogous to the widely used relation between the SFR and total IR luminosity of Kennicutt (1998), we derive an empirical calibration of the SFR in terms of the monochromatic 24 µm luminosity that can be used for luminous, dusty galaxies.
Fast Radio Bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Non-repeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single pulse FRB 180924 to a position 4 kpc from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web.Cosmological observations have shown that baryons comprise 4% of the energy density of the Universe, of which only about 10% is in cold gas and stars (1), with the remainder residing in a diffuse plasma surrounding and in between galaxies and galaxy clusters. The location and density of this material has been challenging to characterize, and up to 50% of it remains unaccounted (2).Fast radio bursts (FRBs; ref.(3)) are bright bursts of radio waves with millisecond duration. They can potentially be used to detect, study, and map this medium, as bursts of emission are dispersed and scattered by their 1 arXiv:1906.11476v1 [astro-ph.HE] 27 Jun 2019 dual-polarization beams on the sky using digital beamforming, producing a total field-of-view of ∼ 30 deg 2 . For burst detection, the beamformers produces channelized autocorrelation spectra for both linear polarizations of all beams, with an integration time of 864 µs and channel bandwidth of 1 MHz in these observations. We used 336 channels centered at 1320 MHz. A real-time detection pipeline incoherently adds the spectra from all available antennas (24 antennas in these observations) and polarization channels, then searches (16) the result for dispersed pulses (17).Burst localization is completed with a second data product that utilizes both the amplitude and phase information of the burst radiation. The beamformers store samples of the complex electric field for all beams and both polarizations in a ring buffer of 3.1 s duration, with the oldest data being continuously overwritten by new data. The data are saved for offline interferometric analysis only when the pipeline identifies a candidate. For the searches reported here the triggering required pulses with widths less than 9 ms and S/N > 10.Previous searches with ASKAP used antennas pointed in different directions to maximize sky coverage (10,16). In contrast, our observations used antennas all pointed in the same direction, enabling the array to act as an interferometer capable of sub-arcsecond localization with a 30 deg 2 field of view. We targeted high Galactic latitude fields (Galactic latitude |b| ∼ 50 • ), that had been observed previously (10, 16), and Southern circumpolar fields. The high-latitude fields were observed regularly through 2017 and earl...
We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H i brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey (HIPASS). The selection of the brightest sources is based on their H i peak flux density (S peak k116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H i masses range from $10 7 to 4 ; 10 10 M . While the BGC (z < 0:03) is complete in S peak , only a subset of $500 sources can be considered complete in integrated H i flux density (F H i k 25 Jy km s À1 ). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H i clouds: while three are likely Magellanic debris with velocities around 400 km s À1 , one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes jbj > 10 . Therefore, the BGC yields no evidence for a population of ''free-floating'' intergalactic H i clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H i sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.