Efficiency droop in InSb/AlInSb quantum-well light-emitting diodes Appl. Phys. Lett. 102, 011127 (2013); 10.1063/1.4773182Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes Blue multi-quantum-well light-emitting diodes ͑LEDs͒ with GaInN quantum wells and polarization-matched AlGaInN barriers are grown by metal-organic chemical vapor deposition. The use of quaternary alloys enables an independent control over interface polarization charges and bandgap and has been suggested as a method to reduce electron leakage from the active region, a carrier loss mechanism that can reduce efficiency at high injection currents-an effect known as the efficiency droop. The GaInN / AlGaInN LEDs show reduced forward voltage, reduced efficiency droop, and improved light-output power at large currents compared to conventional GaInN / GaN LEDs.
We demonstrate a semiconducting material, TiO 2−δ , with ferromagnetism up to 880 K, without the introduction of magnetic ions. The magnetism in these films stems from the controlled introduction of anion defects from both the filmsubstrate interface as well as processing under an oxygen-deficient atmosphere. The room-temperature carriers are n-type with n ∼ 3 × 10 17 cm −3 . The density of spins is ∼10 21 cm −3 . Magnetism scales with conductivity, suggesting that a double exchange interaction is active. This represents a new approach in the design and refinement of magnetic semiconductor materials for spintronics device applications.(Some figures in this article are in colour only in the electronic version)Recent research efforts on the growth of magnetically ordered semiconductor materials [1,2] have received great attention because of potential new applications in spintronics devices [3]. The rationale for this optimism is the plausibility of integrating properties of both magnetic and semiconductor materials in new devices [1] (e.g. spin diodes [3-6] and spin-FETs [7]). Recent research has focused on dilute magnetic semiconductors (DMS) which were synthesized by introducing magnetic ions (e.g. Mn, Co, Fe, and etc) into conventional III-V [1, 2] and II-VI type semiconductors [8,9] or wide bandgap semiconductors including ZnO and TiO 2 [8][9][10][11][12][13]. Also, ferromagnetism was induced in films of hafnium dioxide, HfO 2 , deposited by pulsed laser deposition (PLD) on sapphire substrates and attributed to defect doping [10][11][12]. Bulk HfO 2 is intrinsically non-magnetic and electrically insulating. This report has created intense
Blue light-emitting diodes ͑LEDs͒ with polarization-matched GaInN/GaInN multi-quantum-well ͑MQW͒ active regions are grown by metal-organic vapor-phase epitaxy. The GaInN/GaInN MQW structure reduces the magnitude of polarization sheet charges at heterointerfaces in the active region. The GaInN/GaInN MQW LEDs are shown to have enhanced light-output power, reduced efficiency droop, a lower forward voltage, a smaller diode ideality factor, and decreased wavelength shift, compared with conventional GaInN/GaN MQW LEDs.
Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room temperature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m 3 . Consisting of Co 3 C and Co 2 C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magnet properties. Further, the acicular particle shape provides an enhancement to the coercivity via dipolar anisotropy energy as well as offering potential for particle alignment in nanocomposite cores. While Curie temperatures are near 510K at temperatures approaching 700 K the carbide powders experience an irreversible dissociation to metallic cobalt and carbon thus limiting operational temperatures to near room temperature.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.