We experimentally study how neighboring particles affect the incipient motion of particles on regular substrates and exposed to a laminar shear flow. To this end, we determine the critical Shields number and determine whether the particle rolls or slides. The substrates consist of a monolayer of fixed spheres of uniform size that are regularly arranged in triangular and quadratic configurations. Neighboring particles influence the incipient motion by shielding to the shear flow and may inhibit continuous motion once they are in direct contact with the particle. At the low particle Reynolds numbers studied, neighboring spheres on the monolayer only affect the incipient particle motion if they are closer than about 3 particle diameters. Direct contact inhibits continuous motion and results in a strong increase of the critical Shields number. For identical beads, we found two different regimes for the onset of continuous motion. Depending on the substrate geometry, the upstream particle may start to roll like a single particle passing the downstream neighbor or it may push its downstream neighbor forward. In the latter case, the downstream sphere rolls while the upstream bead slides in contact with the downstream neighbor. Both regimes yield about the same critical Shields number although the critical Shields number for single particle motion differs by about 50%. If particle contact is avoided by a sudden jump in the Shields number, the critical Shields number for onset of continuous particle motion can be reduced considerably. Finally, the lowest critical Shields numbers for dislodging buried beads in the configurations studied coincides with the critical Shields number for incipient motion of irregular granular beds.
In this work, results obtained from roughness characterization ofmicro-textured USIBOR steel samples are shown. Laser texturing is used for creating specific periodic microstructures with positive topographies by molten metal displacement technique. Three different methods based on speckle technique (contrast intensity, binary image analysis, spot size measurement) are testedfor a contactless inspection and determination of surface roughness. Characterization and calibration relationship are based on the correlation between measured roughness (with conventional methods) and results from speckle techniques
Co-cured multi-material metal–polymer composites joints are recent interesting structural materials for locally reinforcing a structure in specific areas of high structural requirements, in fibre metal laminates and lightweight high-performance structures. The influence of manufacturing processes on the morphological quality and their mechanical behaviour has been analysed on joints constituted by sol-gel treated Ti6Al4V and carbon fibre reinforced composites (CFRP). In addition, carbon nanotubes (CNT) have been added to an epoxy matrix to develop multiscale CNT reinforced CFRP, increasing their electrical conductivity and allowing their structural health monitoring (SHM). Mechanical behaviour of manufactured multi-material joints is analysed by the measurement of lap shear strength (LSS) and Mode I adhesive fracture energy (GIC) using double cantilever beam specimens (DCB). It has been proven that the addition of MWCNT improves the conductivity of the multi-material joints, even including surface treatment with sol-gel, allowing structural health monitoring (SHM). Moreover, it has been proven that the manufacturing process affects the polymer interface thickness and the porosity, which strongly influence the mechanical and SHM behaviour. On the one hand, the increase in the adhesive layer thickness leads to a great improvement in mode I fracture energy. On the other hand, a lower interface thickness enhances the SHM sensibility due to the proximity between MWCNT and layers of conductive substrates, carbon woven and titanium alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.