The facile side-specific insertion, on the solid phase, of one or two ferrocene moieties into peptide nucleic acid (PNA) oligomers by click chemistry is presented.
In this paper we present a modular approach for the fabrication of surfaces to characterize protein-protein interactions. The approach is based on azido peptides with an optimized sequence which are then thiol-functionalized using an alkynyl thiol and "click" chemistry. From these peptide thiols we fabricated SAMs on gold to evaluate the protein resistance, using surface plasmon resonance spectroscopy, toward streptavidin, bovin serum albumin (BSA), and fibronectin.
Solid-phase peptide synthesis (SPPS) is a versatile technique for the assembly of small to medium size peptides, that can help in the delivery of bound metal complexes to certain cellular compartments, for example in cancer cells. This work shows a new route to gold-peptide bioconjugates via a non-catalyzed [3 + 2] cycloaddition reaction of gold azides with alkynyl peptides. Gold(I) tetrapeptide conjugates with a mitochondria-targeting sequence were synthesized and display prolonged stability in the presence of thiol-containing biological media. Their antiproliferative potency against selected cancer cells (2-50 mM) corresponds to the lipophilicity of the conjugates. The cellular uptake of Au, determined by atomic absorption spectroscopy (AAS), shows that high initial uptake equals strong cytotoxicity. Respiration and acidification rates react immediately upon treatment with the Au-peptide conjugates, and a terminal breakdown of essential cellular functions is complete within ca. 12 h at most, as observed by online monitoring of the cancer cell metabolism in a microfluidic biosensor device (Bionas sensorchip system). The mode of action of these Au-peptide bioconjugates was elucidated by a variety of biochemical and cell biological experiments. First, a strong selective inhibition of the enzyme thioredoxin reductase (TrxR), a regulator of cellular redox processes, was found. In this context, elevated levels of reactive oxygen species (ROS) and strong effects on the respiration of isolated mouse liver mitochondria were found. These finally lead to cell death via apoptotic pathways, as indicated by flow cytometry, low mitochondrial membrane potential (MMP) and DNA fragmentation. Intriguingly, cisplatin-resistance in p53-mutant MDA-MB231 breast cancer cells could be overcome by the Au-peptide conjugates presented herein.Scheme 2 Fmoc solid-phase peptide synthesis of (phosphine)gold(I) tetrapeptide triazoles 8a-c. Cleavage was effected with TFA-phenol-TIS (75 : 20 : 5) for 1 h in a Schlenk flask under nitrogen. Phenol was added to avoid oxidation of the gold(I) centre under the strongly acidic conditions. Synthesis of (phosphine)gold(I) dipeptides 6a-cTo a flame-dried Schlenk flask 1a (51 mg, 0.1 mmol), alternatively 1b (45 mg, 0.11 mmol) or 1c (43 mg, 0.12 mmol) were added under nitrogen flow together with 1.4 molar equivalents of 3. The mixture was suspended in 10 ml absolute THF and stirred for 4 d under a nitrogen atmosphere protected from light. After completion of the reaction, as indicated by TLC, the solution was evaporated to dryness. The crude product was purified by column chromatography on silica (0.062-0.2 mm) using petroleum ether-ethyl acetate mixtures.
The scope of the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (CuAAC, click chemistry) as a key reaction for the conjugation of ferrocene derivatives to N-terminal functionalized PNA oligomers is explored herein (PNA: peptide nucleic acid). The facile solid-phase synthesis of N-terminal azide or alkyne-functionalized PNA oligomer precursors and their cycloaddition with azidoferrocene, ethynylferrocene, and N-(3-ethylpent-1-yn-3-yl)ferrocene-carboxamide (DEPA-ferrocene) on the solid phase are presented. While the click reaction with azidomethylferrocene worked equally well, the ferrocenylmethyl group is lost from the conjugate upon acid cleavage. However, the desired product was obtained via a post-SPPS conversion of the alkyne-PNA oligomer with azidomethylferrocene in solution. The synthesis of all ferrocene-PNA conjugates (trimer t(3)-PNA, 3, 4, 5, 6; 12mer PNA, 10 - t c t a c a a g a c t c, 11 - t c t a c c g t a c t c) succeeded with excellent yields and purities, as determined by mass spectrometry and HPLC. Electrochemical studies of the trimer Fc-PNA conjugates 3, 4, 5, and 6 with four different ferrocene moieties revealed quasi-reversible redox processes of the ferrocenyl redox couple Fc(0/+) and electrochemical half-wave potentials in a range of E(1/2) = -20 mV to +270 mV vs FcH(0/+) (Fc: ferrocenyl, C(10)H(9)Fe). The observed potential differences ΔE(1/2)(min) are always greater than 60 mV for any given pair of Fc-PNA conjugates, thus allowing a reliable differentiation with sensitive electrochemical methods like e.g. square wave voltammetry (SWV). This is the electrochemical equivalent of "four-color" detection and is hence denoted "four-potential" labeling. Preparation and electrochemical investigation of the set of four structurally different and electrochemically distinguishable ferrocenyl groups conjugated to PNA oligomers, as exemplified by the conjugates 3, 4, 5, and 6, demonstrates the scope of the azide/alkyne cycloaddition for the labeling of PNA with electrochemically active ferrocenyl groups. Furthermore, it provides a PNA-based system for the electrochemical detection of single-nucleotide polymorphism (SNP) in DNA/RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.