To explore possible relationships between mitochondrial DNA (mtDNA) polymorphism and the expression levels of stress-responder nuclear genes we assembled five cybrid cell lines by repopulating 143B.TK − cells, depleted of their own mtDNA (Rho 0 cells), with foreign mitochondria with different mtDNA sequences (lines H, J, T, U, X). We evaluated, at both basal and under heat stress conditions, gene expression (mRNA) and intra-mitochondrial protein levels of HSP60 and HSP75, two key components in cellular stress response. At basal conditions, the levels of HSP60 and HSP75 mRNA were lower in one cybrid (H) than in the others (p=0.005 and p=0.001, respectively). Under stress conditions, the H line over-expressed both genes, so that the inter-cybrid difference was abolished. Moreover, the HSP60 intra-mitochondrial protein levels differed among the cybrid lines (p=0.001), with levels higher in H than in the other cybrid lines. On the whole, our results provide further experimental evidence that mtDNA variability influences the cell response to stressful conditions by modulating components involved in this response. Sentence summary of the article: the results reported in the present study provide important experimental evidence that in human cells mtDNA variability is able to influence the cellular response to heat stress by modulating both the transcription of genes involved in this response and their intra-mitochondrial protein levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.