The nucleoside hydrolase (NH) of the Trypanosoma ViVax parasite catalyzes the hydrolysis of the N-glycosidic bond in ribonucleosides according to the following reaction: -purine (or pyrimidine) nucleoside + H 2 O f purine (pyrimidine) base + ribose. The reaction follows a highly dissociative nucleophilic displacement reaction mechanism with a ribosyl oxocarbenium-like transition state. This paper describes the first pre-steady-state analysis of the conversion of a number of purine nucleosides. The NH exhibits burst kinetics and behaves with half-of-the-sites reactivity. The analysis suggests that the NH of T. ViVax follows a complex multistep mechanism in which a common slow step different from the chemical hydrolysis is rate limiting. Stopped-flow fluorescence binding experiments with ribose indicate that a tightly bound enzyme-ribose complex accumulates during the enzymatic hydrolysis of the common purine nucleosides. This is caused by a slow isomerization between a tight and a loose enzyme-ribose complex forming the rate-limiting step on the reaction coordinate.
We systematically analyzed the crystallographically determined water molecules of all known structures of RNase T1 and compared them to the ordered solvent in a large number of related microbial nucleases. To assess the crystallog-raphers' impact on the interpretation of the solvent structure, we independently refined five validation structures from diffraction data derived from five isomorphous crystals of RNase T1. We also compared the positions of water molecules found in 11 published isomorphous RNase T1 inhibitor complexes. These data suggest that the positions of most of the waters located on the surface of a protein and that are well-determined in the experimental electron density maps are determined primarily by crystal packing forces. Water molecules with less well-defined electron density are in general unique to one or a small number of crystal structures. Only a small number of the well-defined waters are found to be independent of the crystal environment. These waters have a low accessible surface area and B-factor, and tend to be conserved in the crystal structures of a number of evolutionary related ribo-nucleases as well. A single water molecule is found conserved in all known microbial ribonucleases.
The nucleoside hydrolases (NHs) are a family of nucleoside-modifying enzymes. They play an important role in the purine-salvage pathway of many pathogenic organisms which are unable to synthesize purines de novo. Although well characterized in protozoan parasites, their precise function and mechanism remain unclear in other species. For the first time, NHs from Caenorhabditis elegans and Campylobacter jejuni, which are representatives of mesozoa and bacteria, respectively, have been cloned and purified. Steady-state kinetics indicate a different substrate-specificity profile to previously described hydrolases. Native diffraction data sets were collected from crystals of NH from each organism. The hexagonal crystals (space group P6(2)22 or P6(4)22) of NH from C. elegans diffracted to a resolution of 2.8 A, while the data set from the orthorhombic crystals (space group I222 or I2(1)2(1)2(1)) of NH from C. jejuni could be processed to 1.7 A resolution. The unit-cell parameters were a = b = 102.23, c = 117.27 A in the former case and a = 101.13, b = 100.13, c = 81.37 A in the latter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.