A high spectral resolution observation of the diffuse X-ray background in the 60 -1000 eV energy range has been made using an array of thirty-six 1 mm 2 microcalorimeters flown on a sounding rocket. Detector energy resolution ranged from 5-12 eV FWHM, and a composite spectrum of 1 steradian of the background centered at l = 90°, b = +60° was obtained with a net resolution of ~ 9 eV. The target area includes bright 1/4 keV regions, but avoids Loop I and the North Polar Spur. Lines of C VI, O VII, and O VIII are clearly detected with intensities of 5.4 ± 2.3, 4.8 ± 0.8, and 1.6 ± 0.4 photons cm -2 s -1 sr -1 , respectively. The oxygen lines alone account for a majority of the diffuse background observed in the ROSAT R4 band that is not due to resolved extragalactic discrete sources. We also have a positive detection of the Fe-M line complex near 70 eV at an intensity consistent with previous upper limits that indicate substantial gas phase depletion of iron. We include a detailed description of the instrument and its detectors.
We are developing high performance x-ray detectors based on superconducting transition-edge sensors (TES) for application in materials analysis and astronomy. Using our recently developed fully lithographic TES fabrication process, we have made devices with an energy resolution of 4.5 ¦0.1 eV for 5.9 keV x-rays, the best reported energy resolution for any energy dispersive detectors in this energy range. These detectors utilize micromachined thermal isolation structures and transitionedge sensors fabricated from Mo/Cu bilayers with normal-metal boundary conditions. We have found the normal-metal boundary conditions to be critical to stable and reproducible low noise operation. In this paper we present details of fabrication and performance of these devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.