Using H2(15)O 3D Positron Emission Tomography (PET), regional cerebral blood flow (rCBF) was measured in six human subjects under two different conditions: at rest and while performing self-paced horizontal saccadic eye movements in darkness. These two conditions were repeated four times each. First, the comparison between the four saccadic and four resting conditions was investigated in a group and a single subject analysis. Saccades elicited bilateral rCBF increases in the medial part of the superior frontal gyrus (supplementary eye field), precentral gyrus (frontal eye field), superior parietal lobule, anterior medial part of the occipital lobe involving striate and extrastriate cortex (lingual gyrus and cuneus), and in the right inferior parietal lobule. At the subcortical level, activations were found in the left putamen. These results mainly replicate previous PET findings on saccadic control. Second, the interaction between the experimental conditions and their repetition was examined. When activations throughout repetition of the same saccadic task are compared, the supplementary eye fields show a progressive increase of activation. On the contrary, the activation in the cerebellum, left superior parietal lobule and left occipital cortex progressively decreases during the scanning session. Given the existence of such an interaction, the pattern of activations must be interpreted as a function of task repetition. This may be a factor explaining some apparent mismatch between different studies.
Positron emission tomography (PET) was used to investigate the functional anatomy of the foveal fixation system in 10 subjects scanned under three different conditions: at rest (REST), during the fixation of a central point (FIX), and while fixating the same foveal target during the presentation of peripheral visual distractors (DIS). Compared with the REST condition, both FIX and DIS tasks activated a common set of cortical areas. First, in addition to the involvement of the occipital visual cortex, both the frontal eye field (FEF) and the intraparietal sulcus (IPS) were bilaterally activated. Right frontal activation was also found in the dorsolateral prefrontal cortex, the inferior part of the precentral gyrus, and the inferior frontal gyrus. These results suggest that both FEF and IPS may constitute the main cortical regions subserving bilaterally the foveal fixation system in humans. The remaining right frontal activations may be considered as part of the anterior attentional network, supporting a role for the right frontal lobe in the allocation of the attentional mechanisms. Compared with the FIX condition, the DIS task also revealed the perceptual and cognitive processes related to the presence of peripheral visual distractors during foveal fixation. In addition to a bilateral activation of the V5/MT motion-sensitive area, a right FEF-IPS network was activated which may correspond to the engagement of the visuospatial attention. Finally, normalized regional cerebral blood flow (NrCBF) decreases were also observed during both DIS and FIX condition performance. Such NrCBF decreases were centered in the superior and middle temporal gyri, the prefrontal cortex, and the precuneus and the posterior retrosplenial part of the cingulate gyrus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.