Zirconia-supported vanadium oxide systems, with V2O5 loadings ranging from V/Zr ) 0.033-0.270 atom ratios (0.2-2 monolayers), were prepared by impregnation of a porous ZrO2 substrate with ammonium metavanadate solutions. The surface structures of air-calcined samples were elucidated by Raman and X-ray photoelectron spectroscopic techniques and thermal desorption methods. Some insight into how the bulk structures of these materials developed upon thermal treatment was derived from the X-ray diffraction patterns and temperature-programmed reduction. At low V content, surface-dispersed vanadium oxide species were formed, which produced the transformation of the ZrO2 support from the tetragonal phase into the monoclinic one. At higher vanadium oxide contents, a solid-state reaction between V2O5 and ZrO2 occurred, with subsequent formation of the ZrV2O7 phase, this being the major V-containing phase. The reactivity of these surface structures was examined by looking at their performance for the oxidation of o-xylene to phthalic anhydride. Activity tests indicated that surface vanadium oxide species were more active for the oxidation of o-xylene but had a lower selectivity to phthalic anhydride.
Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.