The developments presented in this paper address the challenge of determining the optimal element positions in nonuniformly spaced broadband phased-array antennas in order to best meet desired performance criteria. Specifically, this is accomplished by introducing a new nature-based design technique that couples a robust genetic-algorithm (GA) optimizer with rapid neural-network (NN) estimation procedures. These provide performance criteria as functions of the element positions over the entire scanning range and bandwidth of operation. The objective of this GA-NN technique is to determine the optimal element positions for a broadband aperiodic linear phased-array antenna in order to minimize element VSWRs and sidelobe levels. The NN estimation procedures circumvent the need for computationally intensive full-wave numerical simulations during the optimization process, which would ordinarily render such an optimization task impractical. The effectiveness of the new GA-NN design synthesis technique is demonstrated by considering an example where a nonuniformly spaced linear phased array of ten stacked patch antennas is optimized for operation within a given bandwidth and scanning range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.