Nanobimetallic particles consisting of Au-Pd, Au-Ag, and Au-Pt have been synthesized in a single step by a sol-gel process and stabilized in liquid and solid matrices. Organically modified silicates (Ormosils) that play a dual role of a matrix and of a stabilizer have been used to obtain very stable dispersions in the form of sols, gels, and monoliths. The simultaneous reduction of metal ions leads to either a surface enriched with one component or an alloy type of structure depending on the bimetal combination. The nanometallic dispersions are characterized by absorbance, TEM, XRD, IR, XPS, and CO adsorption studies. The stabilized nanoparticles are found to be good electrocatalysts and the preliminary results on the electrochemical reduction of oxygen are reported.
Knowledge of the molecular mechanisms involved in ionophore-mediated cation transport would be valuable for understanding many essential functions of biological membranes. Cations are transported in several stages, such as formation of the ionophore-cation complex, diffusion across the cell membrane and subsequent release of the cation. Several conformational rearrangements are involved in this process, and so a detailed understanding of all the conformational possibilities of the ionophore seems to be essential for elucidating the molecular mechanism of ion transport. We are carrying out spectroscopic and crystallographic studies to explore the possible conformational stages of ionophores by complexing them, in different solvents, with cations of various sizes and charges. We report here a novel conformation of the ionophore valinomycin in its barium complex. It can be described as an extended depsipeptide chain, without interval hydrogen bonds, wound in the form of an ellipse with the two barium ions located at the foci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.