We present results on the electroexcitation of the low mass resonances (1232)P 33 , N (1440)P 11 , N (1520)D 13 , and N (1535)S 11 in a wide range of Q 2 . The results were obtained in the comprehensive analysis of data from the Continuous Electron Beam Accelerator Facility (CEBAF) large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility (JLab) on differential cross sections, longitudinally polarized beam asymmetries, and longitudinal target and beam-target asymmetries for π electroproduction off the proton. The data were analyzed using two conceptually different approaches-fixed-t dispersion relations and a unitary isobar model-allowing us to draw conclusions on the model sensitivity of the obtained electrocoupling amplitudes. The amplitudes for the (1232)P 33 show the importance of a meson-cloud contribution to quantitatively explain the magnetic dipole strength, as well as the electric and scalar quadrupole transitions. They do not show any tendency of approaching the pQCD regime for Q 2 6 GeV 2 . For the Roper resonance, N (1440)P 11 , the data provide strong evidence that this state is a predominantly radial excitation of a three-quark (3q) ground state. Measured in pion electroproduction, the transverse helicity amplitude for the N (1535)S 11 allowed us to obtain the branching ratios of this state to the πN and ηN channels via comparison with the results extracted from η electroproduction. The extensive CLAS data also enabled the extraction of the γ * p → N (1520)D 13 and N (1535)S 11 longitudinal helicity amplitudes with good precision. For the N (1535)S 11 , these results became a challenge for quark models and may be indicative of large meson-cloud contributions or of representations of this state that differ from a 3q excitation. The transverse amplitudes for the N (1520)D 13 clearly show the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q 2 > 1 GeV 2 , confirming a long-standing prediction of the constituent quark model.
We report the beam energy ( √ sNN = 7.7 -200 GeV) and collision centrality dependence of the mean (M ), standard deviation (σ), skewness (S), and kurtosis (κ) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram.
Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this Letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which G(E)(p) is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the nonperturbative regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.