Cytochrome c oxidase (COX) is one of only four bigenomic proteins in mammalian cells, having ten subunits encoded in the nuclear genome and three in the mitochondrial DNA. The mechanism of its bigenomic control is not well understood. The ten nuclear subunits are on different chromosomes, and the possibility of their coordinate regulation by the same transcription factor(s) deserves serious consideration. The present study tested our hypothesis that nuclear respiratory factor 1 (NRF-1) serves such a role in subunit coordination. Following in silico analysis of murine nuclear-encoded COX subunit promoters, electrophoretic mobility shift and supershift assays indicated NRF-1 binding to all ten promoters. In vivo chromatin immunoprecipitation assays also showed NRF-1 binding to all ten promoters in murine neuroblastoma cells. Site-directed mutagenesis of putative NRF-1 binding sites confirmed the functionality of NRF-1 binding on all ten COX promoters. These sites are highly conserved among mice, rats, and humans. Silencing of NRF-1 with RNA interference reduced all ten COX subunit mRNAs and mRNAs of other genes involved in mitochondrial biogenesis. We conclude that NRF-1 plays a significant role in coordinating the transcriptional regulation of all ten nuclearencoded COX subunits in neurons. Moreover, NRF-1 is known to activate mitochondrial transcription factors A and B, thereby indirectly regulating the expressions of the three mitochondrial-encoded COX subunits. Thus, NRF-1 and our previously described NRF-2 prove to be the two key bigenomic coordinators for transcriptional regulation of all cytochrome c oxidase subunits in neurons. Possible interactions between the NRFs will be investigated in the future.Cytochrome c oxidase or complex IV is a large transmembrane protein located in the inner mitochondrial membrane of eukaryotes and plasma membrane of prokaryotes. It is the terminal enzyme of the electron transport chain, catalyzing the transfer of electrons from reduced cytochrome c to molecular oxygen to form water. The important outcome of this reaction is the generation of ATP through the coupled process of oxidative phosphorylation. Neurons are highly dependent upon ATP for their activity and functions (1). Approximately 90% of ATP generated in the brain is synthesized in the mitochondria via oxidative phosphorylation (2). The activity of this enzyme is reduced in neurodegenerative diseases, such as Alzheimer disease (3, 4). Among respiratory chain deficiencies presented in infancy and early childhood in humans, cytochrome c oxidase (COX) 2 deficiency is the most commonly diagnosed (5). COX deficiency is found with different clinical phenotypes primarily affecting organs with high energy demand, such as the brain, skeletal muscle, heart, and kidney (6).COX is a complex of 13 different subunits, 3 of which (I, II, and III) are encoded in the mitochondrial DNA, and the remaining 10 are nuclear-encoded (7). To form a functional holoenzyme with 1:1 stoichiometry, exact coordination is essential between the two...
Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specific genes. A tandem plant homeodomain (PHD 4-6 ) of MLL4 recognizes unmethylated or asymmetrically dimethylated histone H4 Arg 3 (H4R3me0 or H4R3me2a) and is required for MLL4's nucleosomal methyltransferase activity and MLL4-mediated differentiation. Kabuki syndrome mutations in PHD 4-6 reduce PHD 4-6 's binding ability and MLL4's catalytic activity. PHD 4-6 's binding strength is inhibited by H4R3 symmetric dimethylation (H4R3me2s), a gene-repressive mark. The protein arginine methyltransferase 7 (PRMT7), but not PRMT5, represses MLL4 target genes by up-regulating H4R3me2s levels and antagonizes MLL4-mediated differentiation. Consistently, PRMT7 knockdown increases MLL4-catalyzed H3K4me3 levels. During differentiation, decreased H4R3me2s levels are associated with increased H3K4me3 levels at a cohort of genes, including many HOXA and HOXB genes. These findings indicate that the trans-tail inhibition of MLL4-generated H3K4me3 by PRMT7-regulated H4R3me2s may result from H4R3me2s's interference with PHD 4-6 's binding activity and is a novel epigenetic mechanism that underlies opposing effects of MLL4 and PRMT7 on cellular differentiation.
Histone methyltransferases and demethylases reversibly modulate histone lysine methylation, which is considered a key epigenetic mark associated with gene regulation. Recently, aberrant regulation of gene expression by histone methylation modifiers has emerged as an important mechanism for tumorigenesis. However, it remains largely unknown how histone methyltransferases and demethylases co-regulate transcriptional profiles for cancer cell characteristics. Here, we show that in breast cancer cells, the histone H3 lysine 27 (H3K27) demethylase UTX (also known as KDM6A) positively regulates gene expression programs associated with cell proliferation and invasion. The majority of UTX-controlled genes, including a cohort of oncogenes and pro-metastatic genes, are co-regulated by the H3K4 methyltransferase mixed lineage leukemia 4 (MLL4, also called ALR, KMT2D, and MLL2). UTX interacted with a C-terminal region of MLL4. UTX knockdown resulted in significant decreases in the proliferation and invasiveness of breast cancer cells in vitro and in a mouse xenograft model. Such defective cellular characteristics of UTX-depleted cells were phenocopied by MLL4 knockdown cells. UTX-catalyzed demethylation of trimethylated H3K27 and MLL4-mediated trimethylation at H3K4 occurred inter-dependently at co-target genes of UTX and MLL4. Clinically, high levels of UTX or MLL4 were associated with poor prognosis in breast cancer patients. Taken together, these findings uncover that coordinated regulation of gene expression programs by a histone methyltransferase and a histone demethylase is coupled to the proliferation and invasion of breast cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.