Evidence is accumulating in favor of a linkage at the cellular level between various abiotic stresses. We conducted a study to evaluate the effect of water stress on the heat tolerance of zonal geraniums. Water-stress was imposed as previously described. Leaf water potential (LWP, MPa), relative water content (RWC, percent), and heat-stress tolerance (HST; LT50, defined as temperature causing half maximal percent injury based on electrolyte leakage) were measured in control, stressed, and recovered (watering restored as in controls) plants. Proteins were extracted from the leaves following the treatments. SDS-PAGE and immunoblotting were performed using standard procedures. Immunoblots were probed with antibodies to dehydrin (T. Close) and 70-kDa heat shock cognate (HSC 70 of spinach) proteins (C. Guy). Data indicate that 1) LXWP and RWC in control and stressed plants were –0.378 and –0.804 MPa and 92.31% and 78.69%, respectively; 2) stressed plants exhibited a significant increase in HST compared to control (LT50 of 55°C vs. 51°C), which was associated with the accumulation of several heat-stable, dehydrin proteins (26 to 50 kDa), and of cytosolic and ER luminal (BiP) HSC 70 proteins; 3) in recovered plants, LXWP, RWC, and HST reversed back to the levels of control concomitant with the disappearance or reduction of dehydrins and HSC 70 proteins. These results suggest that specific stress proteins may play a role in development of heat stress tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.