Owing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and ab initio studies, that the codoping of GaN:Mn with Mg allows to control the Mnn+ charge and spin state in the range 3≤n≤5 and 2≥S≥1. According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mgk, where the number of ligands k is pre-defined by fabrication conditions. The properties of these complexes allow to extend towards the infrared the already remarkable optical capabilities of nitrides, open to solotronics functionalities, and generally represent a fresh perspective for magnetic semiconductors.
We report on the fabrication of pseudomorphic wurtzite Ga1−xMnxN grown on GaN with Mn concentrations up to 10% using molecular beam epitaxy. According to Rutherford backscattering, the Mn ions are mainly at the Ga-substitutional positions, and they are homogeneously distributed according to depth-resolved Auger-electron spectroscopy and secondary-ion mass-spectroscopy measurements. A random Mn distribution is indicated by transmission electron microscopy, and no Mn-rich clusters are present for optimized growth conditions. A linear increase of the c-lattice parameter with increasing Mn concentration is found using x-ray diffraction. The ferromagnetic behavior is confirmed by superconducting quantum-interference measurements showing saturation magnetizations of up to 150 emu/cm3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.