Nanoporous track-etched membranes (TeM) are promising materials as adsorbents to remove toxic pollutants, but control over the pore diameter and density in addition to precise functionalization of nanochannels is crucial for controlling the surface area and efficiency of TeMs. This study reported the synthesis of functionalized PET TeMs as high-capacity sorbents for the removal of trivalent arsenic, As(III), which is more mobile and about 60 times more toxic than As(V). Nanochannels of PET-TeMs were functionalized by UV-initiated reversible addition fragmentation chain transfer (RAFT)-mediated grafting of 2-(dimethyamino)ethyl methacrylate (DMAEMA), allowing precise control of the degree of grafting and graft lengths within the nanochannels. Ag NPs were then loaded onto PDMAEMA-g-PET to provide a hybrid sorbent for As(III) removal. The As(III) removal efficiency of Ag@PDMAEMA-g-PET, PDMAEMA-g-PET, and pristine PET TeM was compared by adsorption kinetics studies at various pH and sorption times. The adsorption of As(III) by Ag@DMAEMA-g-PET and DMAEMA-g-PET TeMs was found to follow the Freundlich mechanism and a pseudo-second-order kinetic model. After 10 h, As(III) removal efficiencies were 85.6% and 56% for Ag@PDMAEMA-g-PET and PDMAEMA-g-PET, respectively, while PET template had a very low arsenic sorption capacity of 17.5% at optimal pH of 4.0, indicating that both PDMAEMA grafting and Ag-NPs loading significantly increased the As(III) removal capacity of PET-TeMs.
Synthesis of poly(N-vinylformamide) (PNVF) and its subsequent hydrolysis to convert it to poly(vinyl amine) (PVAm) were performed. Kinetics of acidic and basic hydrolysis of poly(N-vinylformamide) (PNVF), and products of hydrolysis were investigated by using Fourier transform infrared, size exclusion chromatography, 1 H NMR, and 13 C NMR spectroscopies, and thermogravimetric analysis. It was observed that amide groups did not completely transform into amine groups by acidic hydrolysis of PNVF while the conversion of amides into amine groups via basic hydrolysis of PNVF was complete in 12 h, as confirmed by spectroscopic measurements. Results of extensive characterization revealed significant structural and conformational differences between acidic and basic hydrolysis products. Fluorescence spectroscopy was used for the first time to follow the conversion of amide groups into amine groups. The fluorescence intensity of PVAm obtained from basic hydrolysis of PVNF showed significant increase with amide/amine conversion. Finally, PVAm obtained from acidic hydrolysis of PNVF demonstrated potent antimicrobial activity, 10-20 times more, against common pathogens for example, C. albicans as fungal strain and E. coli, S. aureus, B. subtilis, and P. aeruginosa as bacterial strains as compared to PVAm obtained from basic hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.