In the framework of the European Project 19NRM07 HV-com2 supporting the standardization in high-voltage testing with composite and combined wave shapes, a divider to employ in a test set-up for validation of electrical devices submitted to composite voltages below 1 kV has been developed at the Istituto Nazionale di Ricerca Metrologica (INRIM) and currently is under extensive testing. After a simulation stage, an available divider has been modified to comply with the IEC 60,060 requirements in terms of step response and scale factor. To be suitably fast in replying to step voltages, an adjustment of the components of the low-voltage arm has been made. The divider has been calibrated with traceability to the relevant INRIM National Standards and characterized exploiting its scale factor at different voltages and frequencies. The divider has been then inserted in a set-up with a sinusoidal generator, an impulse generator and coupling–blocking elements to carry out tests at low voltages (below 1 kV) with single voltages. In these tests, the divider showed a satisfactory attitude as converting device and its scale factor is traceable with suitable uncertainty.
Cables headed with crimped lugs are frequently used in test laboratories in temperature rise tests carried out to validate electrical devices. The increase in the electrical resistance of the crimped connections can cause high dissipation of power and heat during these tests, impairing their outcome. This work evaluates the effect of thermal stresses on the resistance and on the dissipated power of crimped connections. This resistance was found to be more sensitive to thermal stresses than to mechanical ones analysed in a previous work. A limit of the dissipated power from crimped connections during temperature rise tests was estimated to be about 4 W corresponding to a crimp resistance of 24 μΩ for tests made at 400 A. Respecting these limits could avoid unnecessary rejections of equipment under test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.