Dry deposition of ozone is an important sink of ozone in near‐surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short‐lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely used models. If coordinated with short‐term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long‐term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods. We have traditionally lacked city-wide observations to fully describe these spatial heterogeneities in Houston and in cities globally, especially for reactive gases like nitrogen dioxide (NO 2 ). Here, we analyze novel high-spatial-resolution (250 m × 500 m) NO 2 vertical columns measured by the NASA GCAS airborne spectrometer as part of the September-2013 NASA DISCOVER-AQ mission and discuss differences in population-weighted NO 2 at the census-tract level. Based on the average of 35 repeated flight circuits, we find 37 ± 6% higher NO 2 for non-whites and Hispanics living in low-income tracts (LIN) compared to whites living in highincome tracts (HIW) and report NO 2 disparities separately by race ethnicity (11−32%) and poverty status (15−28%). We observe substantial time-of-day and day-to-day variability in LIN-HIW NO 2 differences (and in other metrics) driven by the greater prevalence of NO x (NO + NO 2 ) emission sources in low-income, non-white, and Hispanic neighborhoods. We evaluate measurements from the recently launched satellite sensor TROPOMI (3.5 km × 7 km at nadir), averaged to 0.01°× 0.01°using physics-based oversampling, and demonstrate that TROPOMI resolves similar relative, but not absolute, tract-level differences compared to GCAS. We utilize the high-resolution FIVE and NEI NO x inventories, plus one year of TROPOMI weekday−weekend variability, to attribute tract-level NO 2 disparities to industrial sources and heavy-duty diesel trucking. We show that GCAS and TROPOMI spatial patterns correspond to the surface patterns measured using aircraft profiling and surface monitors. We discuss opportunities for satellite remote sensing to inform decision making in cities generally.
In US cities, the concentrations of many air pollutants have been observed, modeled, and inferred to be higher in neighborhoods where residents are primarily people of color and have lower household incomes (e.g.,
37Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging 38 to predict and attribute the specific organic compounds and sources that lead to observed OA 39 loadings, largely due to contributions from secondary production. This is especially true for 40 megacities surrounded by numerous regional sources that create an OA background.
One‐second in situ measurements of CO and CO2 mole fractions were made aboard the National Aeronautics and Space Administration DC‐8 aircraft during the 2016 KORUS‐AQ joint air quality and atmospheric chemistry field campaign in South Korea. The ratio of CO to CO2 enhancement is used to characterize regional combustion source signatures. Calculations of the ∆CO/∆CO2 ratio were made with a short duration rolling window (60 s), filtered by the coefficient of determination (R2), and plotted as distributions to characterize air masses measured from the aircraft during the campaign. The KORUS‐AQ sampling domain was divided into analysis regions to facilitate the analysis. Over Seoul, the boundary layer shows a low‐ratio signature in the ∆CO/∆CO2 ratios, with more than 50% of the correlated slopes in the boundary layer falling below 1% ∆CO/∆CO2, and 80% of the slopes between 0% and 2% ∆CO/∆CO2. However, this behavior changes to a larger ratio distribution at higher altitudes. The West Sea receptor region was divided into three analysis sectors, by meteorological regime, and used in conjunction with measurements collected over China during the KORUS‐AQ campaign time period to characterize the Chinese ∆CO/∆CO2 ratio signature. Chinese‐type emissions have a slope distribution that is shifted to higher ratios and broadened compared to measurements over Seoul, with the bulk of the measurements between 2% and 4% ∆CO/∆CO2, with few negative slopes. The measured ratio trends over South Korea are consistent with inventoried CO and CO2 emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.