IRS‐1 undergoes rapid tyrosine phosphorylation during insulin stimulation and forms a stable complex containing the 85 kDa subunit (p85) of the phosphatidylinositol (PtdIns) 3′‐kinase, but p85 is not tyrosyl phosphorylated. IRS‐1 contains nine tyrosine phosphorylation sites in YXXM (Tyr‐Xxx‐Xxx‐Met) motifs. Formation of the IRS‐1‐PtdIns 3′‐kinase complex in vitro is inhibited by synthetic peptides containing phosphorylated YXXM motifs, suggesting that the binding of PtdIns 3′‐kinase to IRS‐1 is mediated through the SH2 (src homology‐2) domains of p85. Furthermore, overexpression of IRS‐1 potentiates the activation of PtdIns 3‐kinase in insulin‐stimulated cells, and tyrosyl phosphorylated IRS‐1 or peptides containing phosphorylated YXXM motifs activate PtdIns 3′‐kinase in vitro. We conclude that the binding of tyrosyl phosphorylated IRS‐1 to the SH2 domains of p85 is the critical step that activates PtdIns 3′‐kinase during insulin stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.