Poly(ADP-ribose) glycohydrolase (PARG), removes poly(ADP-ribose) subunits from proteins that have previously been modified by poly(ADP-ribose) polymerse. This ensures that modification is transient, and it is suggested that removal of poly(ADP-ribose) is essential for some types of DNA repair. Here we show increased γH2AX foci formation and increased homologous recombination when PARG is inhibited. These effects are reduced when replication is inhibited, suggesting that in the absence of PARG activity, replication forks collapse, and homologous recombination is induced for repair. Consistent with this, we show that cells deficient in the homologous recombination protein BRCA2 are sensitive to PARG depletion or inhibition. These data raise the exciting possibility that PARG inhibitors may be used to specifically kill BRCA2 and other homologous recombination-deficient tumors.
N-(adamantyl-1)methyl, N-(adamantyl-2), and N-(omega-aminodecyl) amides of vancomycin, eremomycin, and dechloroeremomycin aglycons and their des-(N-Me-D-Leu) derivatives were synthesized and their antibacterial and anti-HIV activities were investigated. Carboxamides with an intact peptide core demonstrated activity against glycopeptide-susceptible and -resistant bacteria (1-32 microM). N-(adamantyl-1)methylcarboxamide of eremomycin aglycons had good antiretroviral activity (1.6 microM against HIV-1). Compounds with destroyed peptide core [des-(N-Me-D-Leu)-aglycon amides] were inactive against both glycopeptide-sensitive and -resistant bacteria. (Adamantyl-1)methylamide of des-(N-Me-D-Leu)-eremomycin aglycon had good antiretroviral activity (EC50 of 5.5 microM for HIV-1 and 3.5 microM for HIV-2). (Adamantyl-1)methylamides of eremomycin aglycon and its des-(N-Me-d-Leu)-derivative are the most promising and selective antiretroviral agents. Their ability to induce bacterial resistance to glycopeptide antibiotics during prolonged administration may be expected to be very low or absent. This might make the use of these derivatives feasible in the prolonged therapy or prophylaxis of HIV infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.