1. We examined the temporal and mean rate discharge characteristics of 514 single units recorded extracellularly from the dorsal cochlear nucleus (DCN) of anesthetized guinea pigs. A mean rate response area (receptive field) was measured for the majority of units in this study. Each response area was placed in one of seven categories (type I to type V and the intermediate types I/III and IV-T) as defined by previous workers. The shape of the best frequency (BF) rate-level function has been used to aid in the distinction between type IV and type IV-T units, and the classification of type II units is based on their relative response to noise and tone bursts. 2. The threshold of single units was normalized to the cochlear action potential (CAP) threshold (a negative relative threshold indicates that the unit's threshold was more sensitive than the corresponding CAP threshold). There were significant differences (P < 0.05; 1-way analysis of variance--Duncan test) between the mean relative thresholds of type IV units (-12 dB) and those of type I (-6.52 dB), type II (-3 dB), and type I/III units (-4.25 dB). There were also significant differences between the relative thresholds of types III and IV-T and those of types I/III and II. 3. Rate-level functions at a unit's BF were divided into groups according to shape and degree of nonmonotonicity. Six units responded with a decrease in firing rate at all suprathreshold sound levels. However, most units increased their discharge rate over approximately the first 20 dB above BF threshold. Units were further subdivided by the change in slope 20 dB above BF threshold. The majority of units (60%) showed monotonic increases in discharge rate with sound level: some rate-level functions clearly resembled the sloping saturation rate-level functions observed in intermediate-threshold auditory nerve fibers. An unexpected finding was the relatively large number of nonmonotonic rate-level functions (40%). Among a relatively homogenous group of projection neurons (predominantly type IV and pause/build units) with nonmonotonic rate-level functions, the range of "best intensities" (the sound level evoking the highest discharge rate) was < 50 dB. This range of best intensities is narrower than found in higher auditory nuclei. 4. Units were also classified by their temporal activity pattern in response to suprathreshold BF tones. The most common pattern identified is the pause/build pattern (n = 294). This temporal activity pattern has been associated with the principal output neuron of the DCN, the fusiform cell. Our definition of pause/build units includes units with an almost constant steady-state discharge rate. Nonmonotonic rate-level functions were observed in 42% (99 of 233) of pause/build units. A measure of discharge regularity (the SD of the interspike interval/mean interspike interval: coefficient of variation, CV) revealed that the majority (82%) of units classified as pause/build and with steady-state discharge rates > 75 spikes/s (n = 142) were characterized by regular dischar...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.