This study describes the preparation and characterization of glass/poly-3-methyl aniline (P3MA)/PbS quantum dot (QD) optoelectronic photodetector to detect and sense the light in broad spectral regions of UV, Vis, and NIR. This work is carried out to solve the drawbacks of other studs that prepare detectors in just one or two optical regions. Previous studies have used high-priced techniques. The deposition of P3MA on the glass surface was carried out by in situ oxidation process. Then, this polymer film was used to assist the deposition of PbS-QD particles through the ionic adsorption deposition method. The latter was performed using four different concentrations of Pb(NO3)2 solution (0.01, 0.03, 0.05, and 0.07 M) to form four P3MA/PbS composites: I, II, III, and IV, respectively. The chemical structure, morphologies, and electrical and optical properties of these composites were determined using different analytical tools. The SEM confirmed the formation of spherical QD particles of PbS on the P3MA surface. The TEM analysis showed that the composite has an average size of 5 nm, with the interatomic distances of 0.4 nm. Furthermore, the optical band gap values were 1.53, 1.52, 1.50, and 1.51 eV, respectively. The optoelectronic device could detect and sense light from 390 to 636 nm under various optical wavelengths. The produced current density (
J
ph
) values decreased from 0.029 mA.cm-2 at 390 nm to 0.022 mA.cm-2 at 500 nm and then increased until 0.024 mA.cm-2 at 636 nm. The light sensing was determined through the photoresponsivity (
R
) and detectivity (
D
) parameters, in which the photodetector has
R
and
D
values of 0.29 mA.cm-2 and
6.5
×
10
7
Jones, respectively. Finally, a simple mechanism was proposed to explain the light sensing through the prepared optoelectronic device. Soon, our team works on the industrial applications of this optoelectronic device in the industry field related to the great optoelectronic device technical properties and its low cost and easy preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.