Magnesium oxide/polyvinyl alcohol/polyacrylamide (MgO/PVA/PAM) nanocomposite films were prepared via a solution chemical method. The effect of PVA and MgO nanoparticles (NPs) loading on the physical properties of PAM is discussed. X-ray diffraction reveals that the average MgO crystallite size of the NPs is ∼25 nm, while adding PVA increases the crystallinity of PAM. FTIR spectra confirm the interaction between blend chains and MgO NPs. Differential scanning calorimetry thermograms illustrate the miscibility between the PVA and the PAM. The melting temperature, the glass transition, as well as the equilibrium swelling ratio, depend on the films' composition. PAM showed a transmittance of 87%, that increased to 90% after PVA addition, but decreased to 74% after MgO loading. Meaningful changes are observed in the extinction coefficient and indirect/direct band gap of PAM due to PVA blending and MgO addition. The influence of MgO NPs on the dielectric constant ( ɛ′) of the blend film is reported. The maximum value of AC conductivity of the blend is 4.77 × 10−3 Sm−1, which increased to 8.07 × 10−3 Sm−1 by increasing the MgO loading to 5.0 wt.%. The conduction mechanism changed from the correlated barrier hopping, in the blend, to the large Polaron tunneling with MgO loading. The observed improvements in optical properties and AC conductivity encourage the use of these nanocomposite films in the semiconductors industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.