First, a simple model describes theoretically the processes involved in the irradiation of solid targets by femtosecond laser pulses and predicts the optimal target and laser parameters for efficient nanoparticles synthesis. Then, we show experimental evidence for successful synthesis of aluminum nanoparticles. Nanoparticles size distribution, morphology, atomic structure, and chemical composition are determined by various techniques, including x-ray diffraction, atomic force microscopy, scanning and transmission electron microscopy, and energy dispersive spectroscopy.
Measurements of the dynamic spall strength in aluminum, copper, and Metglas shocked by a high-power laser to hundreds of kilobars pressure are reported. The strain rates in these experiments are of the order of 10 7 s Ϫ1 , which cannot be reached in impact experiments. The free-surface velocity behavior associated with spallation is characterized by oscillations caused by the reverberations of the spall layer. An optically recording velocity interferometer system was developed to measure the free-surface velocity time history. This diagnostic method has the advantages of being a noninterfering system and produces a highly accurate continuous measurement in time. The spall strength was calculated from the free-surface velocity as a function of the strain rate. The results show a rapid increase in the spall strength, suggesting that a critical phenomenon occurs at strain rates ϳ10 7 s Ϫ1 , expressed by the sudden approach to the theoretical value of the spall strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.