Nanostructured semiconductors open the opportunity to independently tailor electric and thermal conductivity by manipulation of the phonon transport. Nanostructuring of materials is a highly promising strategy for engineering thermoelectric devices with improved efficiency. The concept of reducing the thermal conductivity without degrading the electrical conductivity is most ideally realized by controlled isotope doping. This work reports on experimental and theoretical investigations on the thermal conductivity of isotopically modulated silicon nanostructures. State-of-the-art pump-and-probe experiments are conducted to determine the thermal conductivity of the different nanostructures of isotopically enriched silicon layers epitaxially grown on natural silicon substrates. Concomitant molecular dynamics calculations are performed to study the impact of the silicon isotope mass, isotope interfaces, and of the isotope layer ordering and thickness on the thermal conductivity. Engineering the isotope distribution is a striking concept to reduce the thermal 6 New J. Phys. 16 (2014) 015021 H Bracht et al conductivity of silicon without affecting its electronic properties. This approach, using isotopically engineered silicon, might pave the way for future commercial thermoelectric devices.
Recent experimental and theoretical investigations have confirmed that a reduction in thermal conductivity of silicon is achieved by isotopic silicon superlattices. In the present study, non-equilibrium molecular dynamics simulations are performed to identify the isotope doping and isotope layer ordering with minimum thermal conductivity. Furthermore, the impact of isotopic intermixing at the superlattice interfaces on phonon transport is investigated. Our results reveal that the coherence of phonons in isotopic Si superlattices is prevented if interfacial mixing of isotopes is considered.
In this paper, we investigate the effect of isotopic modulation on the thermal conductivity of semiconductor nanostructures. The isotope doping is of particular interest for the application of semiconductors as thermoelectric materials as it leaves the electronic properties practically unaffected while the phononic transport is retarded. This approach could increase the figure of merit of thermoelectric generators by decreasing the thermal conductivity of semiconductors. We use non‐equilibrium molecular dynamics simulations to examine thermal transport in isotopically engineered semiconductors. The temperature profiles along the sample region deduced from the simulations allow the extraction of thermal conductivities. The reliability of the MD‐predicted thermal conductivities is studied by analyzing the influence of the input parameters on the results. The first set of samples are isotopically modified silicon samples. The influence of temperature, isotopic composition, and ordering of isotopic defects on the thermal conductivity of silicon is studied. The second material system under investigation is silicon germanium alloys. The influence of isotopic modulation on the thermal conductivity of Si–Ge alloys is examined for varying chemical composition. The thermal conductivities predicted by MD are compared to results derived from the solution of the Boltzmann transport equation in the relaxation time approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.