This work confers the comparative study of Casson-Williamson fluid flow over a heated porous stretchy sheet. The energy and mass transfer equations are modeled by Cattaneo-Christov theory. The governing flow models were altered into an ODE model with the use of suitable transformations. The HAM scheme is applied to find the series solutions. The response of diverse flow variables on fluid speed, fluid warmness, liquid concentration, skin friction coefficient, local Nusselt number, local Sherwood number, local entropy generation number and Bejan number are analyzed through graphs and charts. It is found that the fluid speed subsides when surging values of the magnetic field, porosity, Casson fluid, Williamson fluid and injection/suction parameters. The fluid warmness escalates for a high amount of radiation, convective heating and heat generation/absorption parameters and its suppresses when enriching the convective cooling parameter. The chemical reaction parameter leads to rise in the thickness of the solutal boundary layer. The higher quantity of skin friction coefficient occurs in Casson fluid compared to Williamson fluid. The local entropy generation decimates when growing the Casson and Williamson parameters and it aggravates when raising the Biot number. The Bejan number exalts when upgrading the Reynolds, Brinkman and Biot numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.