This paper aims to study the effects of short basalt fiber reinforcement on the mechanical properties of cast aluminium alloy 7075 composites containing short basalt fiber of content ranging from 2.5 to 10 percent by weight in steps of 2.5 percent and fabricated using compo-casting technique. The objective is to investigate the process feasibility and resulting material properties such as young's modulus, ductility, hardness & compression strength. The properties obtained are compared with those of as-cast that were manufactured under the same fabrication conditions. The results of this study revealed that, as the short basalt fiber content was increased, there were significant increases in the ultimate tensile strength, hardness, compressive strength and Young's modulus, accompanied by a reduction in its ductility. Furthermore, the microstructure & facture studies were carried out using Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) in order to establish relationships between the quality of the fiber/aluminium interface bond and hence to link with mechanical properties of the composites.
This paper reports a study of the Coefficient of Thermal Expansion (CTE) of Al7075/basalt short fiber Metal Matrix Composites (MMCs) as a function of temperature and reinforcement. The percentage of reinforcement was varied from 2.5 to 10 wt. % in steps of 2.5% and the composites were prepared by the liquid metallurgy technique. Using Thermal Mechanical Analyzer (TMA) model DuPont 943 equipment, the changes in the linear dimension as a function of temperature is recorded as Percent Linear Change (PLC). The temperature of the tests ranged from 50°C to 300°C in the steps of 5°C both in the heating and cooling cycles. The results show that the CTE significantly increased with increasing temperature but decreased with increasing basalt fiber. These phenomena are explained.Click here and insert your abstract text.
In this paper, a micro-mechanical model is implemented in software for the prediction of local mechanical properties of discontinuous short fiber reinforced composites. The model, based on the Mori and Tanaka method, shear-lag, computational model, Nielsen-Chen model and Miwa's model is used to predict the elastic behaviour of basalt short fiber reinforced with Al alloy composites. The Al/basalt Metal Matrix Composites (MMCs) contain basalt short fiber from 2.5% to 10% in steps of 2.5 wt.% and are fabricated using squeeze infiltration technique. The effects of fiber length and orientation on elastic properties of Al/basalt MMCs are investigated. A comparison between the experimental data and the theoretical data based on physical models is made, and the significance of the findings is discussed. The results show that as short basalt fiber content was increased from 2.5% to 10% by wt.%, an improvement in Young's modulus of 13.26% has been observed. Optical microscopy was used to examine the general microstructure and fiber distribution in the composite produced. Scanning Electron Microscopy (SEM) was performed on the fractured surface to understand the failure mechanisms.
Abstract:The aim of the work was to investigate the wear properties of basalt short fiber reinforced aluminum Metal Matrix Composites (MMCs) using pin-on-disc wear test rig. The Al/basalt MMCs contains basalt short fiber from 2.5 to 10 % in steps of 2.5 wt. % and fabricated using compocasting technique. The influences of the content of basalt short fiber, wear load, sliding distance, sliding velocity and mode of worn-out surface were discussed. The results indicated that Al/basalt short fiber composite had better wear resistance than that of the matrix alloy and it decreases with wt. % of basalt short fiber content. In other direction wear rate of both unreinforced alloy and reinforced composites increased with increasing in wear load and the sliding speed. Surfaces before and after wear tests were characterized using scanning electron microscopy (SEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.