An experimental investigation of flows of a large number of inert and polyatomic gases in various channels, a non-ideal orifice, flat slits with different surface roughnesses and wall materials, capillary packets with molten walls and a capillary sieve, has been made.The unsteady flow method and a highly sensitive capacitance micromanometer were used (the sensitivity being ∼ 3 × 10−4N/m2Hz). Measurements were made in a range of Knudsen numbers 5 × 104–10−3at ∼ 293 °K, and some measurements for flow through a non-ideal orifice were carried out at 77.2°K.It was found that, both in the viscous slip-flow and free-molecule regimes for the channels with molten walls, the experimental conductivities were higher (by ∼ 15%) than theoretical ones calculated assuming diffuse molecular scattering by the walls. We have also observed that the channel conductivity essentially depends on the channel surface roughness and on the kind of gas. The larger the roughness height, the lower the conductivity. From the experimental data the tangential momentum accommodation coefficients were calculated.
A Poiseuille-flow problem in a cylindrical capillary in the whole range of Knudsen numbers with incomplete tangential momentum accommodation of molecules incident on the wall has been worked out. The linear non-homogeneous integral equation for the macroscopic gas velocity flow has been solved by the Bubnov-Galerkin method. For a limited range of Knudsen numbers, generally known results have been obtained.An experimental investigation of the rare gases helium, neon and argon in the range of Knudsen numbers 103−10−3 has been made on packets consisting of 10 and 100 glass capillaries with molten walls. Comparison of theoretical and experimental data enables us to define both slip constants and tangential momentum accommodation coefficients. In the free-molecule flow regime the accommodation coefficients are 0·935, 0·929 and 0·975 for helium, neon and argon, respectively. In the viscous slip-flow regime these coefficients are equal to 0·895, 0·865 and 0·919, respectively. This difference in the tangential momentum accommodation coefficients is, most probably, due to the variable density of adsorbed molecules coating the capillary wall. Gas viscosity coefficients which coincide with those of Kestin within 0.5% have also been calculated. Argon was used as the calibrating gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.