The extensive chromosome rearrangements of breast carcinomas must contribute to tumour development, but have been largely intractable to classical cytogenetic banding. We report here the analysis by 24-colour karyotyping and comparative genomic hybridization (CGH) of 19 breast carcinoma cell lines and one normal breast epithelial cell line, which provide model examples of karyotype patterns and translocations present in breast carcinomas. The CGH was compared with CGH of 106 primary breast cancers. The lines varied from perfectly diploid to highly aneuploid. Translocations were very varied and over 98% were unbalanced. The most frequent in the carcinomas were 8;11 in five lines; and 8;17, 1;4 and 1;10 in four lines. The most frequently involved chromosome was 8. Several lines showed complex multiply-translocated chromosomes. The very aneuploid karyotypes appeared to fall into two groups that evolved by different routes: one that steadily lost chromosomes and at one point doubled their entire karyotype; and another that steadily gained chromosomes, together with abnormalities. All karyotypes fell within the range seen in fresh material and CGH confirmed that the lines were broadly representative of fresh tumours. The karyotypes provide a resource for the cataloguing and analysis of translocations in these tumours, accessible at http://www.path.cam.ac.uk/~pawefish. © 2000 Cancer Research Campaign
We have developed a technique for fabricating arrays of gaps as small as 3 nm between metal electrodes using a shadow-evaporation technique. These small gaps are fairly reliable and reproducible, and can in principle be made in large quantities, for example across a whole silicon wafer. The gaps can be used to measure the electrical properties of nanoelectronic systems, such as nanocrystals. Our electrical measurements of CdSe nanocrystals 4.2 nm in diameter at 4.2 K show steps in the current–voltage characteristics related to the filling of electronic shells in the nanocrystal and to Coulomb charging.
The problem of mass manufacturing electrode structures suitable for contacting nanoscale elements lies primarily in the difficulty of fabricating a nanometre-scale gap between two electrodes in a well controlled, highly parallel manner. In ULSI circuit production, the gate and substrate in MOSFETs are routinely fabricated with a precise vertical spacing of 3 nm between them. In this work, we have investigated a number of highly parallel methods for the generation of nanogaps, including reconfiguration of the ubiquitous MOS device structure. The silicon dioxide layer that provides vertical separation and electrical insulation between two regions of silicon (the crystalline substrate and the poly-crystalline gate) gives a leakage current of 1 nA μm−2 at 1 V for an oxide thickness of 2 nm [1]. This will enable objects the size of single molecules that are held across this layer to be detected electrically if they provide currents on the nanoampere scale, assuming a parasitic area for leakage between gate and substrate of order 1 µm2. In the future this kind of device has the potential to provide a bolt-on technology for the fabrication of ULSI circuits in which conventional CMOS devices are directly hybridised with functional nanoscale elements.
Background: Circulating tumor DNA (ctDNA) analysis holds potential for minimal residual disease (MRD) detection in early stage breast cancer. However, sensitivity for MRD is limited due to low ctDNA levels in early stage patients and limited blood volumes. Loss of input DNA during library preparation, limited multiplexing or low sensitivity of current molecular methods further limit accuracy. To address this gap, we have developed TARgeted DIgital Sequencing (TARDIS), a novel method for simultaneous analysis of multiple patient-specific mutations in plasma DNA. Methods: Using tumor exome sequencing, we identify and prioritize somatic founder mutations, design nested primers and evaluate them for multiplex performance. Using 5-10 ng input plasma DNA, we perform 1) targeted linear pre-amplification to improve downstream molecular conversion, 2) single-stranded adapter ligation to incorporate unique molecular identifiers (UMIs) and 3) targeted PCR to prepare sequencing-ready libraries. The resulting sequencing reads have fixed target-specific ends and variable ligation ends. We utilize fragment size and UMIs to group sequencing reads into read families. To ensure specificity, we require targeted mutations are supported by 2 or more read families. Results: To assess analytical performance, we targeted 8 mutations in cell-free DNA reference samples with 0.25%-2% mutation allele fractions (AFs). Precision across 7-16 replicates at each AF level agreed with expectations of Poisson distribution, demonstrating effective analysis of ˜70% of input DNA. At 2%, 1%, 0.5% and 0.25% AFs, variant-level sensitivity was 96.4%, 96.4%, 91.1% and 65.8%, approaching the theoretical limit given input DNA. At 0.25% AF, 3-7 mutations were detected per sample, achieving 100% sample-level sensitivity. In 16 wild-type replicates, no targeted mutations were called (100% specificity). Averaging multiple mutations improved precision in sample-level AF estimates. Mean AFs from 8 mutations for the 2% sample were 2.34%-2.80% (5.8% CV). In 6 patients with breast cancer treated with neoadjuvant therapy (NAT), we analyzed 8-18 patient-specific mutations (mean 11.8). Before treatment, ctDNA was detected in 5/6 patients at mean AFs of 0.02%-1.19% (mean 0.40%), supported by 2-10 mutations (mean 5.6). Of these 5 patients, 4 had residual disease after NAT and ctDNA was detected pre-operatively or during NAT in 3/4 patients. 1 patient achieved pathological Complete Response and ctDNA was undetectable after NAT. Conclusions: Preliminary results suggest TARDIS enables accurate MRD detection after neoadjuvant therapy in patients with early stage breast cancer. On-going work is expanding this analysis to include additional patients and investigate the clinical validity of peri-operative ctDNA monitoring. Summary of clinical resultsPatientPre-NAT Stage (TNM)SubtypeNo. of Mutations TargetedBaseline ctDNA (AF%, No. of Mutations)ctDNA after or during NAT (AF%, No. of Mutations)Residual Tumor (TNM)1T3 N1ER+ PR+ HER2-8+ (0.02%, 2)-T2 N12T3 N0TNBC12+ (0.29%, 6)+ (0.01%, 1)T1a N03T2 N1TNBC18+ (1.19%, 10)+ (0.01%, 1)T1mi N04T3 N1TNBC10+ (0.02%, 3)+ (0.05%, 3)T3 N15T2 N0TNBC9+ (0.46%, 7)-pathCR6T1c N1TNBC14--pathCR Citation Format: McDonald BR, Contente-Cuomo T, Sammut S-J, Ernst B, Odenheimer-Bergman A, Perdigones N, Chin S-F, Farooq M, Cronin PA, Anderson KS, Kosiorek H, Northfelt D, McCullough A, Patel B, Caldas C, Pockaj B, Murtaza M. Multiplexed targeted digital sequencing of circulating tumor DNA to detect minimal residual disease in early and locally advanced breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P4-01-21.
Triple-negative breast cancer (TNBC) is defined by absent expression of estrogen receptor (ER), progesterone receptor (PR) and non-overexpression of human epidermal growth factor receptor 2 (HER2), representing a heterogeneous subgroup of breast cancer with substantial genotypic and phenotypic diversity. TNBC patients commonly exhibit poor prognosis and high relapse rates at early stages after conventional treatments. Currently, there is a lack of biomarkers and targeted therapies for the management of TNBC. During tumour development and progression, alterations in cellular behaviour are frequently linked with kinase expression and activity. Here, we aimed to identify novel kinase targets that may play a pivotal role in the progression of TNBC and, thus, offer new therapeutic vantage points. We initially focused on identifying kinases correlated with differential outcome. Using publicly available transcriptomic data from a collated set of TNBC patients (n = 483), we identified 9 kinases that were significantly associated with survival at the mRNA level. From this in silico screen, CDK7 (cyclin-dependent kinase 7) was found to be correlated with poor recurrence-free survival. CDK7's trait as a marker of poor prognosis was further validated within another TNBC cohort (n=109) via assessment of a tissue microarray generated as part of the RATHER Consortium (www.ratherproject.com). At the protein level, high CDK7 expression was associated with poor breast cancer-specific, recurrence-free and distant recurrence-free survival. To evaluate CDK7 as a therapeutic target in TNBC, two TNBC cell lines (BT-549 and MDA-MB-231) were selected to evaluate phenotypic alterations post shRNA-mediated CDK7 knockdown. CDK7 silencing led to decreased cell proliferation, colony formation and migration in vitro. CDK7 down-regulation also increased TNBC cell sensitivity to doxorubicin. BS-181 and THZ1, two highly specific CDK7 inhibitors, attenuated TNBC tumour growth by inducing G2/M phase cell cycle arrest and apoptosis, as well as down-regulation of RNAPII phosphorylation, an indication of global RNA transcription inhibition. Moreover, the covalent CDK7 inhibitor THZ1 demonstrated 1000-fold higher potency than BS-181. Inhibition of global RNA transcription preferentially affects proteins with short half-lives. Accordingly, we detected a reduction in the expression of the anti-apoptotic protein MCL-1 in both cell lines. Next, we assessed anti-apoptotic dependence in MDA-MB-231 cells following treatment with THZ1 via BH3 profiling technology, and observed an increased response to the BAD and HRK peptides, inferring an elevated survival dependence on BCL-2/BCL-XL. We subsequently evaluated the combination of the BCL-2/BCL-XL inhibitor ABT-263 with THZ1 and discovered a synergistic inhibition of cell growth and apoptosis. Resulting combination index (CI) values demonstrated that synergistic cell death occurred following combined treatment with THZ1 and ABT-263/ABT-199 at various doses in both TNBC cell lines tested. Our data implicate high CDK7 expression as a promising biomarker of poor prognosis in TNBC. Moreover, these findings suggest that targeting CDK7, combined with the BCL-2/BCL-XL inhibitor ABT-263, may be a useful therapeutic strategy for TNBC. Citation Format: Gallagher WM, Li B, Ni Chonghaile T, Fan Y, Klinger R, O'Connor AE, Conroy E, Tarrant F, O'Hurley G, Mallya Udupi G, Gaber A, Chin S-F, Schouten PC, Dubois T, Linn S, Jirstrom K, Caldas C, Bernards R, O'Connor DP. CDK7: A marker of poor prognosis and tractable therapeutic target in triple-negative breast cancer. [abstract]. In: Proceedings of the Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium: 2015 Dec 8-12; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(4 Suppl):Abstract nr PD3-01.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.