In this paper, approximation techniques based on the shifted Jacobi together with spectral tau technique are presented to solve a class of initial-boundary value problems for the fractional diffusion equations with variable coefficients on a finite domain. The fractional derivatives are described in the Caputo sense. The technique is derived by expanding the required approximate solution as the elements of shifted Jacobi polynomials. Using the operational matrix of the fractional derivative, the problem can be reduced to a set of linear algebraic equations. Numerical examples are included to demonstrate the validity and applicability of the technique and a comparison is made with the existing results to show that the proposed method is easy to implement and produce accurate results.
In this paper, the objective is to derive the variational formulation of the electrochemical machining problem (ECM for short) and to evaluate the numerical solution using the direction Ritz method. This problem is of degenerate problem which has so many difficulties to be solved using other approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.