▪ Abstract Recent considerable progress in the field of rarefied hypersonic computational fluid dynamics (CFD) gives reason to address its evolution to an independent CFD branch that covers many fundamental and closely related applied problems of high-altitude aerothermodynamics of space vehicles. The primary purpose of this review is to describe the main numerical methods and real gas models for investigation of problems of rarefied hypersonic flows, and to review results that we believe demonstrate most clearly the achievements and capabilities of the field of rarefied hypersonic CFD in the last years.
A hybrid Lagrangian-Eulerian approach is used to examine the properties of water clusters formed in neon-water vapor mixtures expanding through microscale conical nozzles. Experimental size distributions were reliably determined by the sodium doping technique in a molecular beam machine. The comparison of computed size distributions and experimental data shows satisfactory agreement, especially for (H2O)n clusters with n larger than 50. Thus validated simulations provide size selected cluster temperature profiles in and outside the nozzle. This information is used for an in-depth analysis of the crystallization and water cluster aggregation dynamics of recently reported supersonic jet expansion experiments.
Exact relationship is developed that connects the vibrational relaxation number, ZvDSMC, used in the direct simulation Monte Carlo method and that employed in continuum simulations. An approximate expression for ZvDSMC is also derived that is cost-effective and applicable when translational temperature is larger than vibrational temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.