The design of a novel electrothermal microgripper device is shown, which is based on an improved chevron type actuator developed considering their elements parameterization, whose resistive model is also provided. The performance of the microgripper’s parameters, such as displacement, force, and temperature distribution, with convection for the voltage range from 0 up to 5 V, is evaluated through numerical and analytical simulation. Microgripper design was also improved with aid of parameterization. The effect on the microgripper performance due to its thickness is also analyzed, finding a considerable increment in force, when thickness increases. Its main advantage is given by the simplicity of the compliance arrangement of the microgrippers jaws. Considering convection, when 5 V are applied, 37.72 °C was generated at the jaw’s tips of the Improved Microgripper 2 (IMG2), implemented with silicon, this relatively low temperature increases its capabilities of application. When the IMG2 is implemented with polysilicon, its response is competitive comparing with a more complex microgripper, increase of displacement (50%) is shown, but a decrement of force (30%). The diameters allowed for the subjection objects are found between 84.64 µm and 108 µm, with weights lower than 612.2 µg. Some tests of subjection were performed using microcylinders of Au, glass ceramic, polycarbonate and carbon fiber, showing a permissible stress on them, considering its Young’s modulus, as well as the total reaction force induced. All simulations were done on Ansys software. The results demonstrate the feasibility of the future microgripper fabrication.
In several cases, it is desirable to have prototypes of low-cost fabrication and adequate performance. In academic laboratories and industries, miniature and microgrippers can be very useful for observations and the analysis of small objects. Piezoelectrically actuated microgrippers, commonly fabricated with aluminum, and with micrometer stroke or displacement, have been considered as Microelectromechanical Systems (MEMS). Recently, additive manufacture using several polymers has also been used for the fabrication of miniature grippers. This work focuses on the design of a piezoelectric-driven miniature gripper, additive manufactured with Acrylonitrile Butadiene Styrene (PLA), which was modeled using a pseudo rigid body model (PRBM). It was also numerically and experimentally characterized with an acceptable level of approximation. The piezoelectric stack is composed of widely available buzzers. The aperture between the jaws allows it to hold objects with diameters lower than 500 mm, and weights lower than 1.4 g, such as the strands of some plants, salt grains, metal wires, etc. The novelty of this work is given by the miniature gripper’s simple design, as well as the low-cost of the materials and the fabrication process used. In addition, the initial aperture of the jaws can be adjusted, by adhering the metal tips in the required position.
Microelectromechanical (MEM) Accelerometers measure the accelerations or vibrations experienced by objects due to inertial forces or mechanical excitations. To improve their proof mass displacement, several alternatives have been used, such as the design of different shapes of suspension beams. In this work, a new shape of beam is proposed based on alternated segments of different widths. To analyze its performance, one-quarter, middle and complete accelerometers were calculated and simulated; the results were compared with similar cases using conventional uniform-shaped beams. A notable improvement in the proof mass displacement was obtained in all cases, especially with the proposed symmetrical-shaped beam. Harmonic response and explicit dynamic analysis were also considered to discover performance when they are subjected to structural load. An improvement in amplitude displacement was also observed, as well as operation frequency reduction. From the explicit dynamic analysis, a faster performance of the accelerometer with uniform arms can be observed; however, it responds at a lower range of input velocities. A performance comparison of the proposed beam is presented considering the two reported accelerometers. Finally, from the variation in the width of the thinner segment of the symmetrical arms, it can be observed that it is possible to obtain an increment in the displacement of the proof mass of 39.57% and a decrement in natural frequency of 15.30%, with respect to the case of the uniform arm. Other advantages of the symmetric beam are the stress distribution, reducing its effect on the proof mass, as well as their low cross-axis sensitivity. Simulations were performed with ANSYS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.