The "main sequence of galaxies" − defined in terms of the total star formation rate ψ vs. the total stellar mass M * − is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially-resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log(M ⊙ yr −1 Kpc −2 ) and the stellar mass surface density in units of log(M ⊙ Kpc −2 ) in individual spaxels which probe spatial scales of 0.5-1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter (σ = 0.23 dex), irrespective of the dominant ionisation source of the host galaxy or its integrated stellar mass. We highlight: (i) the integrated star formation main sequence formed by galaxies whose dominant ionisation process is related to star formation, for which we find a slope of 0.81 ±0.02; (ii) the spatially-resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ±0.04; (iii) for the integrated main sequence we identified also a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.
We demonstrate the existence of a local mass, metallicity, star formation relation using spatially resolved optical spectroscopy of H ii regions in the local universe. One of the projections of this distribution-the local mass-metallicity relation-extends over a wide range in this parameter space: three orders of magnitude in mass and a factor of eight in metallicity. We explain the new relation as the combined effect of the differential distributions of mass and metallicity in the disks of galaxies, and a selective star formation efficiency. We use this local relation to reproduce-with a noticeable agreement-the mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.
We present 80 stellar and ionised gas velocity maps from the Calar Alto Legacy Integral Field Area (CALIFA) survey in order to characterise the kinematic orientation of non-interacting galaxies. The study of galaxies in isolation is a key step towards understanding how fast-external processes, such as major mergers, affect kinematic properties in galaxies. We derived the global and individual (projected approaching and receding sides) kinematic position angles (PAs) for both the stellar and ionised gas line-of-sight velocity distributions. When compared to the photometric PA, we find that morpho-kinematic differences are smaller than 22 degrees in 90% of the sample for both stellar and nebular components and that internal kinematic misalignments are generally smaller than 16 degrees. We find a tight relation between the global stellar and ionised gas kinematic PA consistent with circular-flow pattern motions in both components (∼90% of the sample has differences smaller than 16 degrees). This relation also holds, generally in barred galaxies across the bar and galaxy disc scales. Our findings suggest that even in the presence of strong bars, both the stellar and the gaseous components tend to follow the gravitational potential of the disc. As a result, kinematic orientation can be used to assess the degree of external distortions in interacting galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.