Seed loss caused by pod-shatter during harvesting is one of the main problems in rapeseed production worldwide. Quantitative trait loci (QTLs) for pod-shatter based on genetic mapping would help breeders develop cultivars resistant to pod-shatter. In this study, we constructed a genetic map of Brassica napus containing 107 simple sequence repeat (SSR) markers and 68 sequence-related amplified polymorphism (SRAP) markers using a doubled-haploid (DH) population of 276 lines derived from the cross H155 × Qva. This map covered 1382.8 cM with an average marker interval of 7.9 cM. In total, 13 QTLs for pod-shatter resistance were identified in this DH population at two experimental sites (in Wuhan and Zhengzhou); three of the QTLs were present at both locations. At Zhengzhou, nine QTLs, identified in linkage groups A1, A7, A8, C5, and C8, together explained 49.0% of the phenotypic variation. At Wuhan, four QTLs were mapped on the A1, A4, A7, and C8 linkage groups. These QTLs explained 38.6% of the phenotypic variation. These results may serve as a valuable basis for further molecular dissection of pod-shatter resistance in B. napus, and for development of the markers related to QTLs that may be useful for marker-assisted selection of pod-shatter resistant cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.