The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric The BepiColombo mission to Mercury Edited by Johannes Benkhoff, Go Murakami and Ayako Matsuoka B A. Milillo
Using over 6 years of magnetic field data (October 2014–December 2020) collected by the Mars Atmosphere and Volatile EvolutioN, we conduct a statistical study on the three‐dimensional average magnetic field structure around Mars. We find that this magnetic field structure conforms to the pattern typical of an induced magnetosphere, that is, the interplanetary magnetic field (IMF) which is carried by the solar wind and which drapes, piles up, slips around the planet, and eventually forms a tail in the wake. The draped field lines from both hemispheres along the direction of the solar wind electric field (E) are directed toward the nightside magnetic equatorial plane, indicating that they are “sinking” toward the wake. These “sinking” field lines from the +E‐hemisphere (E pointing away from the plane) are more flared and dominant in the tail, while the field lines from the –E‐hemisphere (E pointing toward) are more stretched and “pinched” toward the plasma sheet. Such highly “pinched” field lines even form a loop over the pole of the –E‐hemisphere. The tail current sheet also shows an E‐asymmetry: the sheet is thicker with a stronger tailward trueJ→×trueB→ $\overrightarrow{J}\times \overrightarrow{B}$ force at +E‐flank, but much thinner and with a weaker trueJ→×trueB→ $\overrightarrow{J}\times \overrightarrow{B}$ (even turns sunward) at –E‐flank. Additionally, we find that IMF Bx can induce a kink‐like field structure at the boundary layer; the field strength is globally enhanced and the field lines flare less during high dynamic pressure.
The Moon and Mercury are airless bodies, thus they are directly exposed to the ambient plasma (ions and electrons), to photons mostly from the Sun from infrared range all the way to X-rays, and to meteoroid fluxes. Direct exposure to these exogenic sources has important consequences for the formation and evolution of planetary surfaces, including altering their chemical makeup and optical properties, and generating neutral gas exosphere. The formation of a thin atmosphere, more specifically a surface bound exosphere, the relevant physical processes for the particle release, particle loss, and the drivers behind these processes are discussed in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.