Natural regeneration of degraded reefs relies on the recruitment of larvae to restore populations. Intervention strategies are being developed to enhance this process through aquaculture production of coral larvae and their deployment as spat. Larval settlement relies on cues associated with crustose coralline algae (CCA) that are known to induce attachment and metamorphosis. To understand processes underpinning recruitment, we tested larval settlement responses of 15 coral species, to 15 species of CCA from the Great Barrier Reef (GBR). CCA in the family Lithophyllaceae were overall the best inducer across most coral species, with Titanoderma cf. tessellatum being the most effective species that induced at least 50% settlement in 14 of the coral species (mean 81%). Taxonomic level associations were found, with species of Porolithon inducing high settlement in the genus Acropora; while a previously understudied CCA, Sporolithon sp., was a strong inducer for the Lobophyllidae. Habitat-specific associations were detected, with CCA collected from similar light environment as the coral inducing higher levels of settlement. This study revealed the intimate relationships between coral larvae and CCA and provides optimal coral-algal species pairings that could be utilized to increase the success of larval settlement to generate healthy spat for reef restoration.
The settlement of coral larvae is an important process which contributes to the success and longevity of coral reefs. Coral larvae often recruit to benthic structures covered with crustose coralline algae (CCA) which produce cues that promote settlement and metamorphosis. The Peysonneliaceae Ramicrusta spp. are red-brown encrusting alga that have recently become abundant on shallow Caribbean reefs, replacing CCA habitat, overgrowing corals and potentially threatening coral recruitment. In order to assess the threat of Ramicrusta to coral recruitment, we compared the survival and settlement of Porites astreoides and Favia fragum larvae to 0.5 – 2 mg ml-1 solutions of Ramicrusta sp. or CCA as well as sterile seawater (control). In all cases larval mortality was extremely high in the Ramicrusta treatments compared to the CCA and control treatments. We found 96% (± 8.9% standard deviation, SD) mortality of P. astreoides larvae when exposed to solutions of Ramicrusta and 0 - 4% (± 0 - 8.9% SD) mortality in the CCA treatments. We observed 100% F. fragum larval mortality when exposed to Ramicrusta and 5 – 10% (± 10 – 20% SD) mortality in the CCA treatments. Settlement or surface interaction of larvae in the CCA treatments was 40 - 68% (± 22 - 37% SD) for P. astreoides and 65 - 75% (± 10 - 19% SD) for F. fragum. Two P. astreoides larva that survived Ramicrusta exposure did settle/surface interact, suggesting that some larvae may be tolerant to Ramicrusta. These results suggest that Ramicrusta is a lethal threat to Caribbean coral recruitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.