We have investigated the effect of different zwitterionic compounds on DNA precipitation induced by spermine4+. Glycine, beta-alanine, 4-aminobutyric acid, and 6-aminocaproic acid have shown an increasing capacity to attenuate DNA precipitation. This protection effect has been correlated with the dielectric constant increase of their corresponding solutions. Calculations based on these experimental data and counter-ion condensation theory have confirmed the importance of this parameter for DNA-ion interactions and precipitation mechanisms. We have also observed a resolubilization of DNA in the presence of 6-aminocaproic acid at high spermine4+ concentration and in the presence of glycine at high spermidine3+ concentration. This could be explained by an increase of screening effect with polyamine concentration.
The effect of different organic osmolytes on the DNA counterion condensation layer has been investigated by 23Na NMR relaxation measurements. The zwitterionic compounds glycine, beta-alanine, 4-aminobutyric acid, and 6-aminocaproic acid have shown an increasing capacity to decrease the amount of sodium ions in the vicinity of the macromolecule. The experimental data have been correlated with the dielectric constant increase in their corresponding solutions and have been compared with the prediction of counterion condensation theory. Polyols (sorbitol and mannitol) did not display the same effect. These compounds largely increase the relaxation rate of sodium ions in the proximity of DNA, unlike the zwitterionic compounds. This probably results from a perturbation of the water dynamic around the macromolecule, of the primary or secondary hydration shell of the sodium nuclei involved, or both.
We have investigated the effect of glycine (an organic osmolyte) on DNA precipitation induced by spermine4+, spermidine3+ and Tb3+ addition, using circular dichroism (CD), UV spectroscopy (UV), and electric linear dichroism (ELD) techniques. DNA precipitation by the three compounds is perturbed by glycine: more spermine4+, spermidine3+ and Tb3+ must be added to obtain the same extent of precipitation as compared to the behaviour in absence of this organic osmolyte. It seems that glycine has a general effect on the DNA environment. Calculations based on experimental results and Manning's counterion condensation theory show that glycine could modify the electrostatic environment of DNA as a consequence of a change in dielectric constant.
The salt-induced chromatin condensation in chicken erythrocyte nuclei is studied by differential scanning calorimetry (DSC). The degree of chromatin condensation is measured for condensation induced by monovalent, divalent, trivalent, or tetravalent cations and by a mixture of sodium and magnesium. These last two cations show an evident competition effect. Salt-induced chromatin condensation is shown to be an entropy-driven process. A simple model of chromatin based on the polyelectrolyte counterion condensation theory is used in order to compute the charge neutralized by the cations in each chromatin domain. The degree of chromatin condensation is shown to be related to the weighed sum of the square of the phosphate charge of each domain. The model predicts the salt and the chromatin concentration dependence of the condensation and the effect of H1 removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.