Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.
Introduction of recombinant genes into mammalian cells in culture has been an important procedure in establishing the molecular mechanisms of various cellular processes. The efficiency with which plasmid borne recombinant genes are expressed following stable integration into genomes of embryonal carcinoma cells is low. Using the P19 embryonal carcinoma cells as recipients, we found that constructs carrying the promoter and intragenic regions of the murine Pgk-1 gene were expressed with high efficiency. This elevated expression was associated with increased numbers of copies of the transfected plasmid DNA stably associated with the genomes of recipient cells. The elevated plasmid copy numbers may result from enhanced ligation of transfected plasmids because cotransfected plasmids were also integrated in increased numbers. The enhanced integration and expression of transfected plasmids required active transcription through an intragenic region of Pgk-1, perhaps resulting in more recombinogenic plasmid DNAs.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.
A homogenate of purified chromaffin cells was fractionated, after removal of the nuclear fraction, by sucrose density gradient ultracentrifugation. The presence and subcellular localization of low molecular mass GTP-binding proteins was explored by incubation of blots of proteins from different subcellular fractions with [@P]GTP in the presence of MgZ'. The fractions enriched in intact chromaffin granule markers, i.e. catecholamines, chromogranin A, chromogranin B and cytochrome b-561 were also enriched in labelled GTP-binding proteins. Two major labelled components of 23 and 29 kDa were rapidly detected by autoradiography. Traces of 26 and 27 kDa components were also present. These components were detectable in both plasma and granule membranes. In addition to these components, the cytosolic fraction contained another GTP-binding protein of about 20 kDa. Binding of [c@P]GTP was specific and dependent on MgZ+. By analogy to the findings reported in non-mammalian systems, the observations described here suggest the involvement of low molecular mass GTP-binding proteins in the chromaffin cell secretory process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.