To investigate the role of post-transcriptional controls in the regulation of protein expression for the malaria parasite, Plasmodium falciparum, we have compared mRNA transcript and protein abundance levels for seven different stages of the parasite life cycle. A moderately high positive relationship between mRNA and protein abundance was observed for these stages; the most common discrepancy was a delay between mRNA and protein accumulation. Potentially post-transcriptionally regulated genes are identified, and families of functionally related genes were observed to share similar patterns of mRNA and protein accumulation
PYR1/PYL/RCAR proteins (PYLs) are confirmed abscisic acid (ABA) receptors, which inhibit protein phosphatase 2C (PP2C) upon binding to ABA. Arabidopsis thaliana has 14 PYLs, yet their functional distinction remains unclear. Here, we report systematic biochemical characterization of PYLs. A subclass of PYLs, represented by PYL10, inhibited PP2C in the absence of any ligand. Crystal structures of PYL10, both in the free form and in the HAB1 (PP2C)-bound state, revealed the structural basis for its constitutive activity. Structural-guided biochemical analyses revealed that ABA-independent inhibition of PP2C requires the PYLs to exist in a monomeric state. In addition, the residues guarding the entrance to the ligand-binding pocket of these PYLs should be bulky and hydrophobic. Based on these principles, we were able to generate monomeric PYL2 variants that gained constitutive inhibitory effect on PP2Cs. These findings provide an important framework for understanding the complex regulation of ABA signaling by PYL proteins.
We describe a statistical analysis methodology designed to minimize the impact of off-target activities upon large-scale RNA interference (RNAi) screens in mammalian cells. Application of this approach enhances reconfirmation rates and facilitates the experimental validation of new gene activities through the probability-based identification of multiple distinct and active small interfering RNAs (siRNAs) targeting the same gene. We further extend this approach to establish that the optimal redundancy for efficacious RNAi collections is between 4-6 siRNAs per gene.
Background: With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT) presents significant challenges to in silico cis-regulatory element discovery.
The energy sensor AMP-activated protein kinase (AMPK) is a heterotrimeric complex that is allosterically activated by AMP binding to the γ subunit. Cocrystal structures of the mammalian AMPK core reveal occlusion of nucleotide-binding site 3 of the γ subunit in the presence of ATP. However, site 3 is occupied in the presence of AMP. Mutagenesis studies indicate that sites 3 and 4 are important for AMPK allosteric activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.