Abscisic acid (ABA) is an important phytohormone that regulates plant stress responses. Proteins from the PYR-PYL-RCAR family were recently identified as ABA receptors. Upon binding to ABA, a PYL protein associates with type 2C protein phosphatases (PP2Cs) such as ABI1 and ABI2, inhibiting their activity; the molecular mechanisms by which PYLs mediate ABA signaling remain unknown, however. Here we report three crystal structures: apo-PYL2, (+)-ABA-bound PYL2 and (+)-ABA-bound PYL1 in complex with phosphatase ABI1. Apo-PYL2 contains a pocket surrounded by four highly conserved surface loops. In response to ABA binding, loop CL2 closes onto the pocket, creating a surface that recognizes ABI1. In the ternary complex, the CL2 loop is located near the active site of ABI1, blocking the entry of substrate proteins. Together, our data reveal the mechanisms by which ABA regulates PYL-mediated inhibition of PP2Cs.
PYR1/PYL/RCAR proteins (PYLs) are confirmed abscisic acid (ABA) receptors, which inhibit protein phosphatase 2C (PP2C) upon binding to ABA. Arabidopsis thaliana has 14 PYLs, yet their functional distinction remains unclear. Here, we report systematic biochemical characterization of PYLs. A subclass of PYLs, represented by PYL10, inhibited PP2C in the absence of any ligand. Crystal structures of PYL10, both in the free form and in the HAB1 (PP2C)-bound state, revealed the structural basis for its constitutive activity. Structural-guided biochemical analyses revealed that ABA-independent inhibition of PP2C requires the PYLs to exist in a monomeric state. In addition, the residues guarding the entrance to the ligand-binding pocket of these PYLs should be bulky and hydrophobic. Based on these principles, we were able to generate monomeric PYL2 variants that gained constitutive inhibitory effect on PP2Cs. These findings provide an important framework for understanding the complex regulation of ABA signaling by PYL proteins.
Background: Statistical data on the incidence, mortality, and burden of breast cancer and the relevant risk factors are valuable for policy-making. We aimed to estimate breast cancer incidence, deaths, and disability-adjusted life years (DALYs) by country, gender, age group, and social-demographic status between 1990 and 2017. Methods: We extracted breast cancer data from the 2017 Global Burden of Disease (GBD) study from 1990 through 2017 in 195 countries and territories. Data about the number of breast cancer incident cases, deaths, DALYs, and the age-standardized rates were collected. We also estimated the risk factors attributable to breast cancer deaths and DALYs using the comparative risk assessment framework of the GBD study. Results: In 2017, the global incidence of breast cancer increased to 1,960,681 cases. The high social-development index (SDI) quintile included the highest number of breast cancer death cases. Between 2007 and 2017, the ASDR of breast cancer declined globally, especially in high SDI and high middle SDI countries. The related DALYs were 17, 708,600 in 2017 with high middle SDI quintile as the highest contributor. Of the deaths and DALYs, alcohol use was the greatest contributor in most GBD regions and other contributors included high body mass index (BMI) and high fasting plasma glucose. Conclusion: The increasing global breast cancer burden is mainly observed in lower SDI countries; in higher SDI countries, the breast cancer burden tends to be relieving. Therefore, steps against attributable risk factors should be taken to reduce breast cancer burden in lower SDI countries.
The MDM2-p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26, or RPS7, have been shown to play a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, like RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14-MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 play distinct roles in regulating the MDM2-p53 feedback loop in response to ribosomal stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.