A heterologously expressed form of the human Parkinson diseaseassociated protein α-synuclein with a 10-residue N-terminal extension is shown to form a stable tetramer in the absence of lipid bilayers or micelles. Sequential NMR assignments, intramonomer nuclear Overhauser effects, and circular dichroism spectra are consistent with transient formation of α-helices in the first 100 Nterminal residues of the 140-residue α-synuclein sequence. Total phosphorus analysis indicates that phospholipids are not associated with the tetramer as isolated, and chemical cross-linking experiments confirm that the tetramer is the highest-order oligomer present at NMR sample concentrations. Image reconstruction from electron micrographs indicates that a symmetric oligomer is present, with three-or fourfold symmetry. Thermal unfolding experiments indicate that a hydrophobic core is present in the tetramer. A dynamic model for the tetramer structure is proposed, based on expected close association of the amphipathic central helices observed in the previously described micelle-associated "hairpin" structure of α-synuclein. T he protein α-synuclein (αSyn) is associated with the two most prevalent neurodegenerative diseases, Parkinson disease (PD) and Alzheimer's disease (AD). The presence of αSyn-rich aggregates (Lewy bodies) in neurons of the substantia nigra is the defining histopathological hallmark of PD, and is used to differentiate PD from other neurological disorders (1). Monogenic point mutations (A30P, A53T, and E46K) as well as gene duplication and triplication of the αSyn locus have been identified as causal factors of early onset familial PD; E46K has also been associated with Lewy body dementia, the second most common form of dementia after AD (2-4).αSyn is small (140 residues), and though the C-terminal region (∼residues 100-140) is highly acidic and expected to be disordered, the first 100 residues are predicted to be structured and to have α-helical propensity (SI Appendix, Fig. S1). Stable helical structures have been detected by circular dichroism (CD) and NMR when αSyn is incubated with detergent micelles and lipid vesicles (5, 6). Soluble αSyn is typically referred to as an "intrinsically disordered" protein (7,8). However, we herein report the biophysical characterization of a purified soluble form of αSyn that is oligomeric and fractionally occupies helical structures in the absence of micelles or vesicles. The αSyn construct used in our work is purified by use of an N-terminal GST affinity tag under mild conditions to preserve any native structure. After removal of the GST tag, a 10-residue N-terminal extension remains on the αSyn. However, the similarity of the 1 H, 15 N heteronuclear single-quantum coherence (HSQC) fingerprint of our αSyn construct (SI Appendix, Figs. S2 and S3) to those reported by other groups for αSyn suggests that the N-terminal extension does not change structural tendencies significantly. The αSyn construct described here is not toxic to membranes or cells, does not readily aggregate or ...
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Mutational activation of the Ras oncogene products (H-Ras, K-Ras, and N-Ras) is frequently observed in human cancers, making them promising anticancer drug targets. Nonetheless, no effective strategy has been available for the development of Ras inhibitors, partly owing to the absence of well-defined surface pockets suitable for drug binding. Only recently, such pockets have been found in the crystal structures of a unique conformation of Ras⋅GTP. Here we report the successful development of small-molecule Ras inhibitors by an in silico screen targeting a pocket found in the crystal structure of M-Ras⋅GTP carrying an H-Ras–type substitution P40D. The selected compound Kobe0065 and its analog Kobe2602 exhibit inhibitory activity toward H-Ras⋅GTP-c-Raf-1 binding both in vivo and in vitro. They effectively inhibit both anchorage-dependent and -independent growth and induce apoptosis of H- ras G12V –transformed NIH 3T3 cells, which is accompanied by down-regulation of downstream molecules such as MEK/ERK, Akt, and RalA as well as an upstream molecule, Son of sevenless. Moreover, they exhibit antitumor activity on a xenograft of human colon carcinoma SW480 cells carrying the K-ras G12V gene by oral administration. The NMR structure of a complex of the compound with H-Ras⋅GTP T35S , exclusively adopting the unique conformation, confirms its insertion into one of the surface pockets and provides a molecular basis for binding inhibition toward multiple Ras⋅GTP-interacting molecules. This study proves the effectiveness of our strategy for structure-based drug design to target Ras⋅GTP, and the resulting Kobe0065-family compounds may serve as a scaffold for the development of Ras inhibitors with higher potency and specificity.
Ras family small GTPases assume two interconverting conformations, "inactive" state 1 and "active" state 2, in their GTPbound forms. Here, to clarify the mechanism of state transition, we have carried out x-ray crystal structure analyses of a series of mutant H-Ras and M-Ras in complex with guanosine 5-(,␥-imido)triphosphate (GppNHp), representing various intermediate states of the transition. Crystallization of H-RasT35S-GppNHp enables us to solve the first complete tertiary structure of H-Ras state 1 possessing two surface pockets unseen in the state 2 or H-Ras-GDP structure. Moreover, determination of the two distinct crystal structures of H-RasT35S-GppNHp, showing prominent polysterism in the switch I and switch II regions, reveals a pivotal role of the guanine nucleotide-mediated interaction between the two switch regions and its rearrangement by a nucleotide positional change in the state 2 to state 1 transition. Furthermore, the 31 P NMR spectra and crystal structures of the GppNHp-bound forms of M-Ras mutants, carrying various H-Ras-type amino acid substitutions, also reveal the existence of a surface pocket in state 1 and support a similar mechanism based on the nucleotide-mediated interaction and its rearrangement in the state 1 to state 2 transition. Intriguingly, the conformational changes accompanying the state transition mimic those that occurred upon GDP/GTP exchange, indicating a common mechanistic basis inherent in the high flexibility of the switch regions. Collectively, these results clarify the structural features distinguishing the two states and provide new insights into the molecular basis for the state transition of Ras protein.Small GTPases Ras (H-Ras, K-Ras, and N-Ras) are the products of the ras proto-oncogenes and presumed to be some of the most promising targets for anti-cancer drug development because of their high frequency of mutational activation in a variety of human cancers (1). Ras functions as a molecular switch by cycling between GTP-bound active and GDP-bound inactive forms in intracellular signaling pathways controlling cell growth and differentiation. Conversion between the GDPbound and the GTP-bound forms is controlled by guanine nucleotide exchange factors and GTPase-activating proteins (2, 3). Ras comprises the Ras family of small GTPases together with a number of its relatives, including Rap1, Rap2, R-Ras, R-Ras2/ TC1, M-Ras/R-Ras3, etc. (1). X-ray crystallographic and NMR analyses of H-Ras and Rap1A, alone or in complex with their effectors, revealed that the exchange of GTP for GDP results in allosteric conformational changes in two adjacent regions, termed switch I (residues 32-38) and switch II (residues 60 -75), and enables Ras to execute downstream signaling through direct interaction with its effectors, such as Raf kinases and phosphoinositide 3-kinases (2, 3). Recent 31 P NMR spectroscopic studies on Ras unveiled its novel structural feature, the conformational dynamics in the GTP-bound form (4). H-Ras and K-Ras in complex with Mg 2ϩ and a non-hydrolyzable GT...
The MDM2-p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26, or RPS7, have been shown to play a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, like RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14-MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 play distinct roles in regulating the MDM2-p53 feedback loop in response to ribosomal stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.