Alzheimer's disease (AD) is characterized by progressive neurodegeneration leading to loss of cognitive abilities and ultimately to death. Postmortem investigations revealed decreased expression of cerebral insulin-like growth factor (IGF)-1 receptor (IGF-1R) and insulin receptor substrate (IRS) proteins in patients with AD. To elucidate the role of insulin/IGF-1 signaling in AD, we crossed mice expressing the Swedish mutation of amyloid precursor protein (APP(SW), Tg2576 mice) as a model for AD with mice deficient for either IRS-2, neuronal IGF-1R (nIGF-1R(-/-)), or neuronal insulin receptor (nIR(-/-)), and analyzed survival, glucose, and APP metabolism. In the present study, we show that IRS-2 deficiency in Tg2576 mice completely reverses premature mortality in Tg2576 females and delays beta-amyloid (Abeta) accumulation. Analysis of APP metabolism suggested that delayed Abeta accumulation resulted from decreased APP processing. To delineate the upstream signal responsible for IRS-2-mediated disease protection, we analyzed mice with nIGF-1R or nIR deficiency predominantly in the hippocampus. Interestingly, both male and female nIGF-1R(-/-)Tg2576 mice were protected from premature death in the presence of decreased Abeta accumulation specifically in the hippocampus formation. However, neuronal IR deletion had no influence on lethality of Tg2576 mice. Thus, impaired IGF-1/IRS-2 signaling prevents premature death and delays amyloid accumulation in a model of AD.
In different clinical studies, an association of type 2 diabetes and Alzheimer's disease (AD) has been described. However, the underlying mechanisms are still unclear. One explanation could be that vascular complications of diabetes result in neurodegeneration. Alternatively, the mechanism might be directly related to insulin and insulin-like growth factor(IGF)-1 signaling, leading to the proposal that AD is a "brain-type diabetes". Furthermore, postmortem analyses of brains from patients with AD revealed a markedly downregulated expression of insulin receptor (IR), IGF-1 receptor (IGF-1R), insulin receptor substrate (IRS)-1 and IRS-2, and these changes progress with severity of neurodegeneration. These findings raise the question, whether this phenomenon is cause or consequence of neurodegeneration. Recently, Cohen and coworkers have show that knocking down DAF-2 in C. elegans, the homolog of the mammalian IR/IGF-1R, reduces beta-amyloid(Abeta)(1-42) toxicity. Cell based experiments suggest a specific role for the IGF 1/IRS-2 signaling pathway in regulating alpha-/beta-secretase activity. Moreover circulating IGF-1 might influence Abeta clearance from the brain by promoting Abeta transport over the blood brain barrier. Interestingly, brain specific deletion of IRS-2 increases life span, suggesting that long term neuronal IGF-1R signaling might be harmful. Taken together, the data from humans and different model organisms indicate a role of IR/IGF-1R signaling in Abeta metabolism, and clearance as well as longevity. Since more studies are needed to elucidate the impact of insulin and/or IGF-1 treatment in AD, the time to propose these hormones as a potential treatment option for AD has not come yet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.