Homochirality is a signature of life on Earth, yet its origins remain an unsolved puzzle. Achieving homochirality is essential for a high-yielding prebiotic network capable of producing functional polymers like RNA and peptides on a persistent basis. Because of the chiral-induced spin selectivity effect, which established a strong coupling between electron spin and molecular chirality, magnetic surfaces can act as chiral agents and be templates for the enantioselective crystallization of chiral molecules. Here, we studied the spin-selective crystallization of racemic ribo-aminooxazoline (RAO), an RNA precursor, on magnetite (Fe 3 O 4 ) surfaces, achieving an unprecedented enantiomeric excess (ee) of about 60%. Following the initial enrichment, we then obtained homochiral (100% ee) crystals of RAO after a subsequent crystallization. Our results demonstrate a prebiotically plausible way of achieving system-level homochirality from completely racemic starting materials, in a shallow-lake environment on early Earth where sedimentary magnetite deposits are expected to be common.
Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature—indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life’s building blocks.
Homochirality is a signature of life on Earth yet its origins remain an unsolved puzzle. Achieving homochirality is essential for a high-yielding prebiotic network capable of producing functional polymers like ribonucleic acid (RNA) and peptides. However, a prebiotically plausible and robust mechanism to reach homochirality has not been shown to this date. The chiral-induced spin selectivity (CISS) effect has established a strong coupling between electron spin and molecular chirality and this coupling paves the way for breaking the chiral molecular symmetry by spin-selective processes. Magnetic surfaces can act as chiral agents due to the CISS effect and they can be templates for the enantioselective crystallization of chiral molecules. Here we studied the spinselective crystallization of racemic ribo-aminooxazoline (RAO), an RNA precursor, on magnetite (Fe3O4) surfaces, achieving an unprecedented enantiomeric excess of about 60%. Following the initial enrichment, we then obtained homochiral crystals of RAO after a subsequent crystallization. Our work combines two necessary features for reaching homochirality: chiral symmetry-breaking induced by the magnetic surface and self-amplification by conglomerate crystallization of RAO. Our results demonstrate a prebiotically plausible way of achieving systems level homochirality from completely racemic starting materials.
Life is homochiral and homochirality is a fundamental feature of living systems on Earth. While the exact mechanism that led to homochirality is still not fully understood, any realistic scenario on the origins of life needs to address the emergence of homochirality. In order to impose and maintain chirality in a prebiotic network, an environmental factor functioning as a chiral agent is demanded. Magnetized surfaces are prebiotically plausible chiral agents, shown to be effective in enantioseparation of ribose-aminooxazoline (RAO), a ribonucleic acid (RNA) precursor, due to the chiral-induced spin selectivity (CISS) effect. As such, mechanisms for breaking the magnetic symmetry of magnetic minerals are of the utmost importance. Here we report the avalanche magnetization of magnetite (Fe3O4) by the crystallization of enantiopure RAO. The observed breaking of the magnetic symmetry is induced by the chiral molecules due to the CISS effect and spreads out across the magnetic surface like an avalanche, providing a way to uniformly magnetize a magnetic surface without fully covering it. Considered together with our previous results on enantioseparation by crystallization on a magnetic surface, chirality-induced avalanche magnetization paves the way for a cooperative feedback between chiral molecules and magnetic surfaces. With this feedback, a weak natural bias in the net magnetization can be amplified and spin-selective processes can be accommodated on magnetic minerals on a persistent basis.
Biological systems are homochiral, raising the question of how a racemic mixture of prebiotically synthesized biomolecules could attain a homochiral state at the network level. Based on our recent results, we aim to address a related question of how chiral information might have flowed in a prebiotic network. Utilizing the crystallization properties of the central ribonucleic acid (RNA) precursor known as ribose-aminooxazoline (RAO), we showed that its homochiral crystals can be obtained from its fully racemic solution on a magnetic mineral surface due to the chiral-induced spin selectivity (CISS) effect [Ozturk et al., arXiv:2303.01394 (2023)]. Moreover, we uncovered a mechanism facilitated by the CISS effect through which chiral molecules, such as RAO, can uniformly magnetize such surfaces in a variety of planetary environments in a persistent manner [Ozturk et al., arXiv:2304.09095 (2023)]. All this is very tantalizing because recent experiments with tRNA analogs demonstrate high stereoselectivity in the attachment of L-amino acids to D-ribonucleotides, enabling the transfer of homochirality from RNA to peptides [Wu et al., J. Am. Chem. Soc. 143, 11836 (2021)]. Therefore, the biological homochirality problem may be reduced to ensuring that a single common RNA precursor (e.g., RAO) can be made homochiral. The emergence of homochirality at RAO then allows for the chiral information to propagate through RNA, then to peptides, and ultimately through enantioselective catalysis to metabolites. This directionality of the chiral information flow parallels that of the central dogma of molecular biology—the unidirectional transfer of genetic information from nucleic acids to proteins [F. H. Crick, in Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, edited by F. K. Sanders (Cambridge University Press, Cambridge, 1958), pp. 138-163; and F. Crick, Nature 227, 561 (1970)].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.