In any metal cutting machining operation, the cutting fluid plays important role by cooling the cutting tool and the surface of the work piece, also chips are removed from heat affected zone. However, misuse of the cutting fluid and wrong methods of its disposal can affect human health and the environment badly. This paper presents a review of the important research papers published regarding the MQL-based application of mineral oils, vegetable oils and nano fluid-based cutting fluids for different machining processes, such as, drilling, turning, milling and grinding, etc. Most of the experimental studies have shown that application of MQL produces surface better than the flood and dry machining. In turning operation, parameters such as cutting speed, depth of cut, feed rate and tool nose radius have great impact on the surface finish. During high speed turning of steel inherently generates high cutting zone temperature. Such high temperature causes dimensional deviation and failure of cutting tools, surface and subsurface micro cracks, corrosion etc. Therefore, with proper selection of the MQL system and the cutting parameters, it is possible for MQL machining with minimum cost and less quantity of coolant to obtain better conditions, in terms of lubricity, tool life, cutting temperature and surface finish. The findings of this study show that MQL with nano fluid can substitute the flood lubrication for better surface finish.
The successful running of any mass production depends upon the interchangeability to facilitate easy assembly and reduction of unit cost. Mass production methods demand a fast and easy method of positioning work for accurate operations on it. Jigs and fixtures are production tools used to accurately manufacture duplicate and interchangeable parts. Jigs and fixtures are specially designed so that large numbers of components can be machined or assembled identically, and to ensure interchangeability of components. To eliminate marking, punching, positioning, alignments etc. It will make easy, quick and consistently accurate locating, supporting and clamping the blank in alignment of the cutting tool. Guidance to the cutting tool like drill, reamer etc. Increase in productivity and maintain product quality consistently. It will reduce operator's labour and skill -requirement, Also reduce measurement and its cost .Enhancing technological capacity of the machine tools. Reduction of overall machining cost and also increases in interchangeability.
This paper illustrates the Petri net modeling of a conceptual model of flexible manufacturing system (FMS) and addresses the problem of deadlock by establishing deadlock prevention policy. The first part introduces the problem of deadlock in FMS, deadlock handling strategies and basic concepts of petri net modeling. Literature review is presented in the second part and third part shows an illustration of Petri net modeling of a conceptual model of FMS processing two part types, consisting of three machines, a load/unload station and single robots. It is assumed that each of the part has three machining operations to be performed. Reachability graph is then generated for this model and is used to detect the possible deadlock states. Finally deadlock prevention policy is established for this conceptual FMS model based on reachability graph analysis. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.