The Atomic Weapons Establishment, Aldermaston, U.K., has a number of pulsed-power-driven flash X-ray machines for diagnosing the hydrodynamics of explosively-driven high-atomic-number materials. The most powerful of these machines is Mogul-E, which operates at about 10 MV and 30 kA, delivering about 400 R at 1 m in a 5-mm spot. Longer-term plans envisage the upgrading of existing facilities through the construction of a hydrodynamic research facility (HRF) with multiaxis radiography. It is proposed that the HRF will be furnished initially with three inductive voltage adder (IVA) machines operating at 14 MV, each giving 600 R at 1 m in a 5-mm spot. It is envisaged that, following further research, the outputs will be increased towards 1000 R, with a reduction in X-ray spot size. More speculative proposals involve increasing the number of machines from three to five, and/or the splitting of the output end of one or more machines to drive more than one X-ray source per machine. An overview of the research programme necessary to achieve these aims is presented. Topics covered include: experiments to investigate the performance at 5 MV of the paraxial diode and the magnetically immersed diode; split magnetically insulated transmission lines where one machine drove two X-ray sources; the design and testing of a prototype IVA module operating at 1.5 MV; the design of an upgrade from 5 MV to 10 MV of one of our existing single pulse-forming-line machines; and initial experiments to investigate the usefulness of ultrashort-pulse lasers for generating useful fluences of 2-4 MeV X-rays.Index Terms-Blumlein, chirped-pulse amplification, CPA, diodes, electron accelerator, immersed B-field diode, inductive voltage adder, IVA, marx, paraxial diode, pulse power, pulsed power, radiography, rod pinch, source size reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.