The investigation aims at obtaining a life time extension of FeCrAlY heating elements by increasing the emissivity of the alumina surface scales. This approach will allow the use of a lower heating element temperature without decreasing the usable heat output. For this purpose, the oxidation mechanisms of Zr-doped FeCrAlY model alloys were investigated. For thick specimens a high Zr addition is accompanied by an undesired rapid increase of the oxidation rate adversely affecting the life time of the component. However, for thin foil heating elements (typically 50-200 mm thickness) an optimized high Zr content might be a suitable concept for obtaining a high emissivity, because apparently, a dark appearing, high emissivity oxide may be obtained without occurrence of dramatic internal oxidation.
The oxidation limited lifetime of thin-walled FeCrAlY heating elements is governed by the depletion of the aluminium reservoir from the bulk alloy as a result of scale growth, whereby the lifetime is known to strongly decrease with increasing temperature. The present investigation aims at obtaining a heating element lifetime extension by increasing the emissivity of the growing alumina scales because this would allow using a lower heating element temperature without decreasing the usable heat output. For this purpose, the oxidation mechanisms of a Zr doped FeCrAlY alloy as function of time, temperature, composition and component thickness were investigated using a combination of experimental techniques such as thermogravimetry, optical microscopy, scanning electron microscopy, transmission electron microscopy, focused ion beam technique, sputtered neutrals mass spectrometry and glow discharge optical emission spectroscopy. The emissivity of the oxide scales was determined by measuring the reflectivity of oxidised specimens as a function of wavelength and correlated with the oxide scale morphologies as a function of initial alloy composition and pretreatment procedure. The results showed that an increased emissivity of the alumina scales as a result of a change in oxide morphology (i.e. wavy scaleyalloy interface and incorporation of the Zr-oxide precipitates across the oxide scale) can be obtained by suitable Zr-doping of the alloy. The emissivity value during long term exposure at high temperatures is, however, adversely affected by depletion of Zr in the bulk alloy, especially in thin components. Pretreatment of the alloys in a H 2 -H 2 O containing atmosphere (low pO 2 ) resulted in an increased emissivity, probably due to an increased Fe (and Cr) content in the outer part of the alumina scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.