Recent growth in the capabilities of unmanned aerial vehicles and systems (UASs) as airborne platforms for collecting environmental data has been very rapid. There are now ample examples in the literature of UASs being deployed to map fine‐scale vegetation, glacial, soil and atmospheric conditions. The purported advantages of UASs are their ability to collect spatial data at lower cost, lower risk, higher resolution and higher frequency than ground surveys or satellite platforms. In this specific study, whether or not obtaining high‐resolution UAS imagery was advantageous for identifying an intermittent stream network was determined by comparing it with coarse‐scale satellite imagery collected for the same purpose. It was also determined if the UAS imagery could be an improvement to Global Positioning System acquired ground‐truth points for classifying an intermittent stream network across the same large‐scale satellite image. The UAS‐acquired and satellite‐acquired imageries were derived from a visible spectrum camera capable of 2‐cm resolution and multispectral SPOT‐5 with 10‐m resolution, respectively. The SPOT‐5 imagery with its relatively coarse resolution could not always detect the narrow intermittent stream, which was well resolved in the UAS imagery. When a classified UAS image was applied as a training area for the SPOT‐5 image, the identification of the stream network and accuracy of the satellite imagery classification did not necessarily improve. UASs have the potential to revolutionize hydrological research the same way that geographic information systems did three decades ago. A final goal of the paper is to provide insight into the advantages and disadvantages of deploying a UAS for this kind of research. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2015 John Wiley & Sons, Ltd.
Wetlands have the capacity to retain nitrogen and phosphorus and are thereby often considered a viable option for improving water quality at local scales. However, little is known about the cumulative influence of wetlands outside of floodplains, i.e., non-floodplain wetlands (NFWs), on surface water quality at watershed scales. Such evidence is important to meet global, national, regional, and local water quality goals effectively and comprehensively. In this critical review, we synthesize the state of the science about the watershed-scale effects of NFWs on nutrient-based (nitrogen, phosphorus) water quality. We further highlight where knowledge is limited in this research area and the challenges of garnering this information. On the basis of previous wetland literature, we develop emerging concepts that assist in advancing the science linking NFWs to watershed-scale nutrient conditions. Finally, we ask, “Where do we go from here?” We address this question using a 2-fold approach. First, we demonstrate, via example model simulations, how explicitly considering NFWs in watershed nutrient modeling changes predicted nutrient yields to receiving waters–and how this may potentially affect future water quality management decisions. Second, we outline research recommendations that will improve our scientific understanding of how NFWs affect downstream water quality.
A dry climate, the prevalence of small depressions, and the lack of a well‐developed drainage network are characteristics of environments with extremely variable contributing areas to runoff. These types of regions arguably present the greatest challenge to properly understanding catchment streamflow generation processes. Previous studies have shown that contributing area dynamics are important for streamflow response, but the nature of the relationship between the two is not typically understood. Furthermore, it is not often tested how well hydrological models simulate contributing area. In this study, the ability of a semidistributed hydrological model, the PDMROF configuration of Environment Canada's MESH model, was tested to determine if it could simulate contributing area. The study focused on the St. Denis Creek watershed in central Saskatchewan, Canada, which with its considerable topographic depressions, exhibits wide variation in contributing area, making it ideal for this type of investigation. MESH‐PDMROF was able to replicate contributing area derived independently from satellite imagery. Daily model simulations revealed a hysteretic relationship between contributing area and streamflow not apparent from the less frequent remote sensing observations. This exercise revealed that contributing area extent can be simulated by a semi‐distributed hydrological model with a scheme that assumes storage capacity distribution can be represented with a probability function. However, further investigation is needed to determine if it can adequately represent the complex relationship between streamflow and contributing area that is such a key signature of catchment behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.