This paper outlines the development of a clustering algorithm used for inspection planning which allows each inspection feature to be inspected at a designated cell. This is achieved by grouping (a) inspection features into feature families and (b) probe orientations into probe cells. This would result in minimal probe calibration errors and part installation errors for the relative tolerance features. This procedure would reduce the time for probe exchange and reinstallation of parts. An incidence matrix representation has been developed to represent the relationship between inspection features and their relative probe orientations. The incidence matrix which is used for grouping feature families and probe cells are similar in function to the concept of group technology (GT) as used in machine cell formation. The knowledge-based clustering algorithm possesses the flexibility for consideration of multiple constraints for grouping probe cells and feature families. The application of the developed clustering algorithm satisfies the requirement of the inspection feature grouping and provides efficiency and effectiveness in probe selection and inspection process planning for coordinate measuring machines (CMMs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.