The matrix metalloproteinases (MMPs) are a family of zinc-dependent proteinases involved in the degradation of the extracellular matrix. The MMPs have been implicated in the processes of tumor growth, invasion, and metastasis; are frequently overexpressed in malignant tumors; and have been associated with an aggressive malignant phenotype and adverse prognosis in patients with cancer. A number of MMP inhibitors are being developed for the treatment of cancer. The most extensively studied class of MMP inhibitors includes collagen peptidomimetics and nonpeptidomimetic inhibitors of the MMP active site, tetracycline derivatives, and bisphosphonates. The hydroxamate peptidomimetic inhibitor batimastat and its orally bioavailable analogue marimastat, which bind covalently to the zinc atom at the MMP-active site, were the first MMP inhibitors to be studied in detail. Marimastat is currently being studied in randomized clinical trials. The nonpeptidic MMP inhibitors were synthesized in an attempt to improve the oral bioavailability and pharmaceutical properties of the peptidic inhibitors. Several members of this class of compounds are undergoing evaluation in phase III clinical trials. The tetracyclines and, particularly, the nonantibiotic chemically modified tetracyclines, interfere with several aspects of MMP expression and activation and inhibit tumor growth and metastases in preclinical models. A representative agent of this class, Col-3, is currently undergoing phase I clinical trials. The development of the MMP inhibitors, like that of other targeted and predominantly antiproliferative compounds, poses a challenge because the paradigms that have governed the design of clinical oncology trials may not be relevant to this new class of agents. The anticipated need for long-term administration of these drugs, together with their cytostatic mechanism of action, will require novel clinical trial design strategies.
Metabolomics, an omic science in systems biology, is the global quantitative assessment of endogenous metabolites within a biological system. Either individually or grouped as a metabolomic profile, detection of metabolites is carried out in cells, tissues, or biofluids by either nuclear magnetic resonance spectroscopy or mass spectrometry.There is potential for the metabolome to have a multitude of uses in oncology, including the early detection and diagnosis of cancer and as both a predictive and pharmacodynamic marker of drug effect. Despite this, there is lack of knowledge in the oncology community regarding metabolomics and confusion about its methodologic processes, technical challenges, and clinical applications. Metabolomics, when used as a translational research tool, can provide a link between the laboratory and clinic, particularly because metabolic and molecular imaging technologies, such as positron emission tomography and magnetic resonance spectroscopic imaging, enable the discrimination of metabolic markers noninvasively in vivo. Here, we review the current and potential applications of metabolomics, focusing on its use as a biomarker for cancer diagnosis, prognosis, and therapeutic evaluation. History and DefinitionsThe omic sciences of systems biology ( Fig. 1), including genomics, transcriptomics, proteomics, and metabolomics, have been in existence for decades, whereas much attention has been focused on their development and application in the last several years. Metabolomics is an analytic tool used in conjunction with pattern recognition approaches and bioinformatics to detect metabolites and follow their changes in biofluids or tissue (1 -3). Precise numbers of human metabolites is unknown, with estimates ranging from the thousands to tens of thousands. Metabolomics is a term that encompasses several types of analyses, including (a) metabolic fingerprinting, which measures a subset of the whole profile with little differentiation or quantitation of metabolites (4); (b) metabolic profiling, the quantitative study of a group of metabolites, known or unknown, within or associated with a particular metabolic pathway (5, 6); and (c) target isotope-based analysis, which focuses on a particular segment of the metabolome by analyzing only a few selected metabolites that comprise a specific biochemical pathway (7).Metabolomics allows for a global assessment of a cellular state within the context of the immediate environment, taking into account genetic regulation, altered kinetic activity of enzymes, and changes in metabolic reactions (2,8,9). Thus, compared with genomics or proteomics, metabolomics reflects changes in phenotype and therefore function. The omic sciences are, however, complementary as ''upstream'' changes in genes and proteins are measured ''downstream'' as changes in cellular metabolism (2, 7). The converse, however, is that metabolomics is also a terminal view of the biological system, not allowing for representation of the genes and proteins that are increased or decreas...
At the tested schedule and dose range, rhApo2L/TRAIL was safe and well tolerated. Dose escalation achieved peak rhApo2L/TRAIL serum concentrations equivalent to those associated with preclinical antitumor efficacy.
PurposeAdenoid cystic carcinomas (ACCs) represent a heterogeneous group of chemotherapy refractory tumors, with a subset demonstrating an aggressive phenotype. We investigated the molecular underpinnings of this phenotype and assessed the Notch1 pathway as a potential therapeutic target.MethodsWe genotyped 102 ACCs that had available pathologic and clinical data. Notch1 activation was assessed by immunohistochemistry for Notch1 intracellular domain. Luciferase reporter assays were used to confirm Notch1 target gene expression in vitro. The Notch1 inhibitor brontictuzumab was tested in patient-derived xenografts from patients with ACC and in a patient with ACC who was enrolled in a phase I study.ResultsNOTCH1 mutations occurred predominantly (14 of 15 patients) in the negative regulatory region and Pro-Glu-Ser-Thr–rich domains, the same two hotspots seen in T-cell acute lymphoblastic leukemias, and led to pathway activation in vitro. NOTCH1-mutant tumors demonstrated significantly higher levels of Notch1 pathway activation than wild-type tumors on the basis of Notch1 intracellular domain staining (P = .004). NOTCH1 mutations define a distinct aggressive ACC subgroup with a significantly higher likelihood of solid subtype (P < .001), advanced-stage disease at diagnosis (P = .02), higher rate of liver and bone metastasis (P ≤ .02), shorter relapse-free survival (median, 13 v 34 months; P = .01), and shorter overall survival (median 30 v 122 months; P = .001) when compared with NOTCH1 wild-type tumors. Significant tumor growth inhibition with brontictuzumab was observed exclusively in the ACC patient-derived xenograft model that harbored a NOTCH1 activating mutation. Furthermore, an index patient with NOTCH1-mutant ACC had a partial response to brontictuzumab.ConclusionNOTCH1 mutations define a distinct disease phenotype characterized by solid histology, liver and bone metastasis, poor prognosis, and potential responsiveness to Notch1 inhibitors. Clinical studies targeting Notch1 in a genotype-defined ACC subgroup are warranted.
Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. IntroductionAlthough early cutaneous melanoma is usually curable with surgery, distant metastatic melanoma is an aggressive cancer with a median overall survival time of less than 1 year. In 2012, over 75,000 new melanoma diagnoses were expected and over 9,000 deaths were projected (1). Advances in the understanding of distinct melanoma subtypes as well as melanoma immunobiology have resulted in 2 FDA-approved therapies for metastatic melanoma in 2011: vemurafenib, an inhibitor of mutant BRAF -an oncogene present in approximately 50% of melanomas -and ipilimumab, a monoclonal antibody that targets CTLA-4 (2-4). Despite these rather impressive developments, the overall clinical benefit is limited to either small subgroups of patients who
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.